Difference between revisions of "Resource:Previous Seminars"

From MobiNetS
Jump to: navigation, search
Line 1: Line 1:
=== History ===
=== History ===
{{Hist_seminar
|abstract = Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
|confname =INFOCOM'25
|link = https://ieeexplore.ieee.org/abstract/document/11044587
|title= HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing
|speaker= Yi Zhou
|date=2025-9-26
}}{{Hist_seminar
|abstract = Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).
|confname =NSDI'25
|link = https://www.usenix.org/conference/nsdi25/presentation/garg
|title= Large Network UWB Localization: Algorithms and Implementation
|speaker=Bangguo
|date=2025-9-26
}}
{{Hist_seminar
{{Hist_seminar
|abstract = With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.
|abstract = With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.

Revision as of 21:51, 16 October 2025

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}