Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(162 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-12-10 8:40
|time='''Friday 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Resource provisioning in multi-tenant stream processing systems faces the dual challenges of keeping resource utilization high (without over-provisioning), and ensuring performance isolation. In our common production use cases, where streaming workloads have to meet latency targets and avoid breaching service-level agreements, existing solutions are incapable of handling the wide variability of user needs. Our framework called Cameo uses fine-grained stream processing (inspired by actor computation models), and is able to provide high resource utilization while meeting latency targets. Cameo dynamically calculates and propagates priorities of events based on user latency targets and query semantics. Experiments on Microsoft Azure show that compared to state-of-the-art, the Cameo framework: i) reduces query latency by 2.7X in single tenant settings, ii) reduces query latency by 4.6X in multi-tenant scenarios, and iii) weathers transient spikes of workload.
|abstract=Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
|confname= NSDI 2021
|confname=MobiCom'23
|link=https://www.usenix.org/system/files/nsdi21spring-xu.pdf
|link=https://arxiv.org/pdf/2308.06053
|title=Move Fast and Meet Deadlines: Fine-grained Real-time Stream Processing with Cameo
|title=Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
|speaker=Jianfei
|speaker=Jiale
}}
|date=2024-06-14}}
{{Latest_seminar
{{Latest_seminar
|abstract = Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
|abstract=Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.
|confname= ICML 2021
|confname=SEC'23
|link= https://arxiv.org/pdf/2105.10056.pdf
|link=https://www.cs.hunter.cuny.edu/~sdebroy/publication-files/SEC2023_CR.pdf
|title=Data-Free Knowledge Distillation for Heterogeneous Federated Learning
|title=On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction
|speaker=Jianqi
|speaker=Yang Wang
}}
|date=2024-06-14}}
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 15:22, 11 June 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom'23] Cost-effective On-device Continual Learning over Memory Hierarchy with Miro, Jiale
    Abstract: Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
  2. [SEC'23] On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction, Yang Wang
    Abstract: Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}