Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m (wenliang updates seminars)
 
(154 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2021-12-17 8:40'''
|time='''Friday 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Data collection with mobile elements can improve energy efficiency and balance load distribution in wireless sensor networks (WSNs). However, complex network environments bring about inconvenience of path design. This work addresses the network environment issue, by presenting an objective-variable tour planning (OVTP) strategy for mobile data gathering in partitioned WSNs. Unlike existing studies of connected networks, our work focuses on disjoint networks with connectivity requirement and serves delay-hash applications as well as energy-efficient scenarios respectively. We first design a converging-aware location selection mechanism, which macroscopically converges rendezvous points (RPs) to lay a foundation of a short tour. We then develop a delay-aware path formation mechanism, which constructs a short tour connecting all segments by a new convex hull algorithm and a new genetic operation. In addition, we devise an energy-aware path extension mechanism, which selects appropriate extra RPs according to specific metrics in order to reduce the energy depletion of data transmission. Extensive simulations demonstrate the effectiveness and advantages of the new strategy in terms of path length, energy depletion, and data collection ratio.
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
|confname= TMC 2022
|confname=IPSN 2023
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9119834
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|title=Objective-Variable Tour Planning for Mobile Data Collection in Partitioned Sensor Networks
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|speaker=Zhuoliu
|speaker=Kai Chen
}}
|date=2024-05-10}}
{{Latest_seminar
{{Latest_seminar
|abstract = Connected and Autonomous Vehicles (CAVs) heavily rely on 3D sensors such as LiDARs, radars, and stereo cameras. However, 3D sensors from a single vehicle suffer from two fundamental limitations: vulnerability to occlusion and loss of details on far-away objects. To overcome both limitations, in this paper, we design, implement, and evaluate EMP, a novel edge-assisted multi-vehicle perception system for CAVs. In EMP, multiple nearby CAVs share their raw sensor data with an edge server which then merges CAVs' individual views to form a more complete view with a higher resolution. The merged view can drastically enhance the perception quality of the participating CAVs. Our core methodological contribution is to make the sensor data sharing scalable, adaptive, and resource-efficient over oftentimes highly fluctuating wireless links through a series of novel algorithms, which are then integrated into a full-fledged cooperative sensing pipeline. Extensive evaluations demonstrate that EMP can achieve real-time processing at 24 FPS and end-to-end latency of 93 ms on average. EMP reduces the end-to-end latency by 49% to 65% compared to the traditional vehicle-to-vehicle (V2V) sharing approach without edge support. Our case studies show that cooperative sensing powered by EMP can detect hazards such as blind spots faster by 0.5 to 1.1 seconds, compared to a single vehicle's perception.
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname= MobiCom 2021
|confname=INFOCOM 2023
|link= https://dl.acm.org/doi/10.1145/3447993.3483242
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=EMP: edge-assisted multi-vehicle perception
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Jiangshu
|speaker=Rong Cong
}}
|date=2024-05-10}}
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 20:19, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}