Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(135 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-4-15 10:20'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = LoRaWANhas emerged as an appealing technology to connect IoT devices but it functions without explicit coordination among transmitters, which can lead to many packet collisions as the network scales. State-of-the-art work proposes various approaches to deal with these collisions, but most functions only in high signal-to-interference ratio (SIR) conditions and thus does not scale to real scenarios where weak receptions are easily buried by stronger receptions from nearby transmitters. In this paper, we take a fresh look at LoRa’s physical layer, revealing that its underlying linear chirp modulation fundamentally limits the capacity and scalability of concurrent LoRa transmissions. We show that by replacing linear chirps with their non-linear counterparts, we can boost the throughput of concurrent LoRa transmissions and empower the LoRa receiver to successfully receive weak transmissions in the presence of strong colliding signals. Such a non-linear chirp design further enables the receiver to demodulate fully aligned collision symbols — a case where none of the existing approaches can deal with. We implement these ideas in a holistic LoRaWANstack based on the USRP N210 software-defined radio platform. Our head-to-head comparison with two stateof-the-art research systems and a standard LoRaWAN baseline demonstrates that CurvingLoRa improves the network throughput by 1.6–7.6x while simultaneously sacrificing neither power efficiency nor noise resilience.
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
|confname= NSDI 2022
|confname=IPSN 2023
|link=https://www.usenix.org/system/files/nsdi22-paper-li_chenning.pdf
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|title=CurvingLoRa to Boost LoRa Network Throughput  via Concurrent Transmission
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|speaker=Xiong
|speaker=Kai Chen
}}
|date=2024-05-10}}
{{Latest_seminar
{{Latest_seminar
|abstract = Long Range Wide Area Network (LoRaWAN), using the linear chirp for data modulation, is known for its low-power and long-distance communication to connect massive Internetof-Things devices at a low cost. However, LoRaWAN throughput is far behind the demand for the dense and large-scale IoT deployments, due to the frequent collisions with the by-default random channel access (i.e., ALOHA). Recently, some works enable an effective LoRa carrier-sense for collision avoidance. However, the continuous back-off makes the network throughput easily saturated and degrades the energy efficiency at LoRa end nodes. In this paper, we propose CurveALOHA, a brandnew media access control scheme to enhance the throughput of random channel access by embracing non-linear chirps enabled quasi-orthogonal logical channels. First, we empirically show that non-linear chirps can achieve similar noise tolerance ability as the linear one does. Then, we observe that multiple nonlinear chirps can create new logical channels which are quasiorthogonal with the linear one and each other. Finally, given a set of non-linear chirps, we design two random chirp selection methods to guarantee an end node can access a channel with less collision probability. We implement CurveALOHA with the software-defined radios and conduct extensive experiments in both indoor and outdoor environments. The results show that CurveALOHA’s network throughput is 59.6% higher than the state-of-the-art carrier-sense MAC.  
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname= INFOCOM 2022
|confname=INFOCOM 2023
|link=https://cse.msu.edu/~caozc/papers/infocom22-li.pdf
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=CurveALOHA: Non-linear Chirps Enabled High Throughput Random Channel Access for LoRa
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Xiong
|speaker=Rong Cong
}}
|date=2024-05-10}}
 
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 20:19, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}