
IEEE INTERNET OF THINGS JOURNAL 1

Multi-User Offloading for Edge Computing
Networks: A Dependency-Aware and

Latency-Optimal Approach
Chang Shu, Zhiwei Zhao*, Member, IEEE, Yunpeng Han, Geyong Min*, Member, IEEE,

Hancong Duan, Member, IEEE,

Abstract—Driven by the tremendous application demands,
the Internet-of-Things (IoT) systems are expected to fulfill
computation-intensive and latency-sensitive sensing and compu-
tational tasks, which pose a significant challenge for the IoT
devices with limited computational ability and battery capac-
ity. To address this problem, edge computing is a promising
architecture where the IoT devices can offload their tasks to the
edge servers. Current works on task offloading often overlook
the unique task topologies and schedules from the IoT devices,
leading to degraded performance and underutilization of the
edge resources. In this paper, we investigate the problem of fine-
grained task offloading in edge computing for low-power IoT
systems. By explicitly considering 1) the topology/schedules of the
IoT tasks, 2) the heterogeneous resources on edge servers and 3)
the wireless interference in the multi-access edge networks, we
propose a lightweight yet efficient offloading scheme for multi-
user Edge systems, which offloads the most appropriate IoT
tasks/subtasks to edge servers such that the expected execution
time is minimized. To support the multi-user offloading, we
also propose a distributed consensus algorithm for low-power
IoT devices. We conduct extensive simulation experiments and
the results show that the proposed offloading algorithms can
effectively reduce the end-to-end task execution time and improve
the resource utilization of the edge servers.

I. INTRODUCTION

With the continuous development of microelectronic and

communication technologies, massive novel applications have

emerged, such as the smart access control based on face

recognition [1], smart vehicular networks [2] and virtual reality

[3]. These applications are often computation-intensive and

latency-sensitive [4]–[6]. A natural obstacle for the IoT sys-

tems to accommodate such tasks is that IoT devices are often

small in size (smartphones, wearables, etc.), which further

leads to limited computation and communication abilities. To

enhance the computation and communication capacity of IoT

systems, Multi-Access Edge Computing (MEC) has recently

been proposed as a promising technology to overcome this

dilemma [7]–[9]. Specifically, edge computing for IoT is an

ecosystem aiming to provide processing capabilities for the

resource-constrained IoT devices by providing computation

resources at the edge of IoT networks [10]. The IoT tasks

C. Shu, Z. Zhao, Y. Han and H. Duan are with School of Computer Science
and Engineering, University of Electronic Science and Technology of China,
Chengdu, China. G. Min are with University of Exeter, Exeter, UK. Z. Zhao
and G. Min are the corresponding authors.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

are first uploaded to and then processed in the edge networks.

After that, the results are returned to the corresponding IoT

devices [11]. By offloading the tasks from resource constrained

devices to the powerful edge servers, the overall execution

delay and energy consumption can be reduced.

Control

Map

Traffic

Path

1ms

3ms

4ms

1ms
Local

Edge server

t/ms0

CTRL Traffic

Map

PathIdle

1 3 5 6 7

CTRLL Traffic Idle Path

rr Map

t/ms0

CTRL Map PathIdle

1 3 5 6 7

CTRLC LLL MapL PathIdle

7.67 t/ms0

CTRL Map Path

1 4 10

TrafficTraffic Map Traffic

11

CTRLC PathhLLLL PMap TrafficEdge server

Local Navigator Panel

(a) (b)

(c) (d)

Fig. 1. DAG of Navigator app

Considering the increasing complexity of IoT applications

[12] [13], a typical application task consists of a series of

subtasks [1] [2], which are originally designed to enable multi-

thread processing. The dependency among the subtasks can

be often described by a directed acyclic graph (DAG). Fig.

1 shows the typical task topology of a vehicular navigation

device. The circles denote subtasks of the application and the

directed edges represent the intertask dependency. The values

marked on each circle denotes the local execution time of

the corresponding subtask. The navigation system in Fig. 1

runs as follows. The user first inputs a destination on the

navigation devices, which activates the Controller module to

check the current GPS position. Then the data flow passes

through two parallel subtasks Map and Traffic to obtain all the

optional paths and the traffic conditions along the direction

to the destination. The last subtask, Path, interacts with the

above two parallel subtasks to provide the best itinerary to the

navigation panel.

Following most existing offloading works [14]–[17], these

four subtasks are often packed and treated as an entire task.

The upload decision does not distinguish the four different

subtasks inside the navigation task. The reason is that they

are considered as an “inseparable” unit due to the dependency

[18]–[20].

IEEE INTERNET OF THINGS JOURNAL 2

TABLE I
THE DELAY COMPARISON

Transmission Execution Overall
Uploading Map 3ms 6ms 7ms
Uploading Traffic 3ms 6.67ms 7.67ms
Uploading application 5ms 6ms 11ms

Considering the limited communication ability of the nav-

igation devices, such offloading may lead to too much trans-

mission delay and the overall execution time may not be

reduced as shown in Fig. 1(d). As a result, the fine-grained

offloading opportunities for subtasks are also wasted. We argue

that in such scenarios, a more reasonable offloading could be

to upload either Map (Fig. 1(b)) or Traffic (Fig. 1(c)) as these

two subtasks can be executed at the same time. In this way,

these two parallel subtasks are processed concurrently at the

IoT devices and edge servers and the delay could be reduced.

Table I compares the delay for uploading the entire task and

uploading subtasks (It is worth noting that when uploading

subtasks, the local execution and transmissions start at the

same time and 2ms is overlapped).

We can see that for the low-powered scenarios with con-

strained resources, we need to offload the most appropriate
subtasks in order to exploit fine-grained offloading opportuni-
ties and minimize the overall delay. However, it is a non-trivial

task due to the following challenges.

1) How to reveal the offloading opportunities from the
task topologies.
From the example, we can see that according to the

specific task topology, different subtasks have different

potential benefits when offloaded (Fig. 1(b), and Fig.

1(c)). Therefore, before offloading specific subtasks, we

need first to identify 1) which subtasks can be offloaded

and 2) which combinations of subtasks provide more

potential performance gains. For example in Fig. 1,

although Map’s overall delay at the edge (including the

transmission delay) exceeds its local execution delay

(3ms), it can still be offloaded as it can be executed

in parallel with Traffic and thus the overall delay for the

entire task can be reduced. To address this challenge,

we need to analyze the task topology to find out such

offloading opportunities.

2) How to coordinate subtasks uploading strategies
among different users for the multi-user edge com-
puting systems with heterogeneous servers.
The transmission time and execution time in the edge

play an important role in the overall execution time for

offloaded tasks, which can directly impact the offloading

decisions. Therefore, we need to coordinate all the

uploading strategies of different users to achieve a min-

imum average delay. However, the sub-task offloading

problem showed in Fig. 1 will become much more

challenging in multi-user, multi-subtask scenario as: 1)

The transmission time is affected by the number of

contending users, which is determined by the offloading

decisions of other nearby users; 2) each user may

offload different amount of task data, which also has

an important impact on task scheduling in each server.

3) How to determine the subtasks to be offloaded in a
lightweight and consensus manner, with dynamically
changing wireless and requests conditions.
With the above information, the next job is to determine

which subtasks should be offloaded. The main challenge

for the decision is that 1) how to evaluate the potential

benefits of offloading a given set of subtasks and 2)the

distributed consensus strategy is important in resource-

constrained IoT devices. There is a high demanding for

the coordination of subtasks to efficiently process data

over the IoT devices or edge servers, while the pro-

cessing power and storage capacity of wireless devices

in IoT is rather restricted. Thus it is challenge for us

to perform the decision process in a lightweight and

consensus manner such that it does not incur much delay

on the low-power IoT devices.

To overcome the above challenges, firstly we propose the

EFO (Earliest Finish-time Offloading) algorithm for single-

user MEC system to decide which subtasks need to be

offloaded to achieve more performance gains. And then we

further extend the EFO algorithm to multi-user systems with

heterogeneous servers, aiming to coordinate the competition

of communication and computation among multiple users.

Moreover, in order to improve the efficiency of the offloading

decisions, we design a distributed computation offloading

algorithm that can achieve the Nash equilibrium. Finally, we

conduct extensive simulations for performance evaluation. The

results show that the proposed offloading algorithms can effec-

tively reduce the end-to-end task execution time (by 81.6%)

and improve the resource utilization of the edge servers.
The main contributions in this paper are summarized as

follows:

1) We propose a potential evaluation scheme for subtasks,

which considers not only the computation workload of

the subtask but also the dependency among subtasks in

the task DAGs. With this algorithm, we can find out

the potential benefits for offloading specific subtasks and

possible combinations.

2) Considering the competition among multiple users both

in wireless communication and computation resources,

we propose a coordinated EFO algorithm based on

consensus algorithm, which coordinates the subtask up-

loading strategies based on the proposed EFO algorithm.

3) We implement the proposed algorithms and conduct sim-

ulation experiments for performance evaluation. Both

centralized and distributed algorithms have been dis-

cussed and evaluated. The results show that the overall

delay can be significantly reduced.

The rest of this paper is organized as follows. Section 2

introduces the related work. Section 3 presents the system

model and problem formulation. Section 4 introduces the

main design of the offloading strategy. Section 5 presents the

evaluation results.

II. RELATED WORK

Recently, MEC (Multi-access edge computing) has received

more and more attention, and various offloading policies have

IEEE INTERNET OF THINGS JOURNAL 3

been proposed [11], [21]–[25]. These policies can be classified

into two categories: centralized and distributed.

For centralized offloading policies [15], [18], the MEC

controller obtains all the information on the wireless chan-

nel quality and the computation requests from IoT devices.

Based on the collected information, the controller arranges

wireless channel and computation resources to each IoT device

to avoid offloading collisions. In [18], the author studied

resource allocation for multi-user MECO system, and the

mobile users share a single edge server. They formulated this

resource allocation strategy as a convex optimization problem,

which aims to minimize the sum energy consumption. With

the introduction of the multi-access network and ultra-dense

network of 5G, Chen et al. in [15] proposed a task offloading

policy for mobile edge computing in software-defined ultra-

dense networks. They formulated the task offloading problem

as a mixed integer non-linear program (which is NP-hard).

Then they transformed this optimization problem into task

placement sub-problem and resource allocation sub-problem.

In the view of prior works, most of them assumed that the

computation capacity of the edge server is infinite. Along a

different line, in our work, we study the offloading scheme

in multi-server, multi-user edge computing system and jointly

consider the communication and resource scheduling at edge

servers for offloaded tasks.

Another thrust of works targets distributed resource allo-

cation for multi-user MEC system [8], [19], [20], [26]. In

[8], [19] they formulate the distributed computation offloading

decision-making problem among mobile users as a multi-user

computation offloading game. And a distributed computation

offloading algorithm is designed to achieve the Nash equi-

librium. The upper bound of the convergence time is also

derived. In [20], [26], targeting the multi-user and multi-server

scenario of a small-cell network integrated with MEC, they

formulate the problem as a distribute overhead minimization

problem, which aims to minimize the overhead for users. Then

they developed a potential game based offloading algorithm

(PGOA) to save the offloading delay. Different from those

distributed computation offloading strategies, we 1) consider

the tasks as DAGs in order to identify the fine-grained offload-

ing opportunities and 2) consider the competition among the

subtasks from different users.

A closely related work to our is [14], the authors con-

sider that the application consists of a series of sequential

modules and then decide which module to be offloaded and

how these modules should be executed (cloud computing

or edge computing). An Iterative Heuristic MEC Resource

Allocation (IHRA) algorithm is also proposed to dynamically

make the offloading decisions. Compared to [14], our work

considered more general and complex task dependencies in

DAGs other than the sequential subtasks. Besides, we utilize

the parallelism of subtasks in DAGs to minimize the overall

delay. There has been extensive work on sub-task allocation

and graph matching for datacenters [16], [17]. Our work

has the following differences: 1) communications in MEC

are via the wireless spectrum, thus experiencing more severe

inference than communications in datacenters. 2) Most tasks

in the datacenter scenario do not depend on any specific

hardware. However, many tasks on IoT devices are restricted

to be executed locally because they require specific sensors

or modules on local devices. 3) The graph matching schemes

in datacenters are computationally expensive for the resource-

constrained IoT devices.

In this work, we propose a fine-grained offloading strategy

to shorten application completion time, which jointly considers

1) the dependency of subtask in DAGs, 2) the offloading

strategies in a multi-user MEC system with multiple hetero-

geneous servers, and 3) the scheduling of offloaded tasks on

the edge servers. Compared to our prior work [27], we prove

two theorems to confirm the problem is NP-hard and guide the

design of the distributed and consensus algorithms. We also

conduct more extensive experiments to study the algorithm

performance under various network conditions.

III. SYSTEM MODEL

In this section, we introduce the details of the system model.

The IoT system is composed of a code profiler, system profiler,

and decision module [28]. The responsibility of code profiler

is to determine which part of the code could be offloaded

(depending on application type and code partitioned [29]).

The system profiler monitors the parameters, such as wireless

bandwidth, data size to be uploaded, and the energy spent by

execution or transmission of the various subtask. Finally, the

decision module determines whether the subtasks are to be

offloaded or not. In our work, we mainly focus on the design

of the decision module. The main objective of our decision

module is to minimize the execution delay of the application

while the energy consumption at the IoT devices is satisfied.

Specifically, a decision on the task (context) offloading to

the edge servers is made to check whether the offloading

is profitable for IoT devices in terms of energy consumption

and execution delay (Note that there is some non-offloadable

code part that cannot be offloaded, e.g., user input, camera, or

acquire position that needs to be executed at the IoT device).

We consider a set of N= [1, 2, ..i, ..N] IoT devices, where

each user has an application-level task to be completed with

the help of the edge servers. In the multi-access edge network

or ultra-dense IoT network, there will be a variety of edge

servers, defined by S= [1, 2, ..k, ..S]. Considering that the IoT

devices are equipped with only one radio, although several

edge servers are available, only one of them can be selected

by an IoT device during task execution. Consequently, for any

IoT device i, it can choose at most two offloading strategies

to finish its subtasks, i.e., computing locally or offloading to

one of the edge servers. The computation-intensive application

is partitioned into some interdependent subtasks, denoted by

a set of Vi= [1, 2, ..j, ..Vi], ∀i ∈N . We utilize a directed

acyclic task graph G = (V,E) to describe the dependency

relationships among these tasks as shown in Fig. 1, where V
is the set of subtasks. We assume that each subtask is atomic

and non-interruptible during execution. E is the set of directed

edges characterizing dependency between the subtasks. For

example, a directed edge(m,n) implies that task n relies

on the result task m. Each node label shows expected local

execution time, the weight on each edge shows the amount

IEEE INTERNET OF THINGS JOURNAL 4

TABLE II
NOTATIONS

Notation Description
N The set of IoT devices
S The set of edge servers
Vi The set of subtasks of devices i
Ti,j j − th subtask of the device i
mi,j The computation input data size of Ti,j

ci,j The required CPU cycles of Ti,j

ai,j The offloading strategy of Ti,j

ai The offloading scheme of device i
a The decision profile of all the devices

f l
i The local computation capability of device i

fk The computation capability of server k

tli,j The local execution time of subtask Ti,j

eli,j Energy consumption of Ti,j for local task processing

tki,j The total latency of Ti,j in server k

wk
i,j Execution time of Ti,j in edge server k

wi,j Average execution time of Ti,j

eki,j Energy consumption for Ti,j processing in server k

AST (j, k) Actual execution start time of subtask j in server k
AFT (j, k) Actual execution finish time of subtask j in server k
Cj,j′ Transferring data from subtask j’ to subtask j

rank(j) The priority of subtask j

of data communication between two tasks. Considering the

uncertainty of wireless channel and competition of the com-

putation resource in each server, the latency minimization

problem for offloading needs to address the communication

and computation resources allocation at the same time. In

the following, we continue to present the communication and

computation models. For clear presentation, we summarize the

notations used in the following formulation in Table II.

A. Communication Model

We consider a multi-user MEC system with multiple het-

erogeneous edge servers (containing heterogeneous resources).

For any j-th computation subtask of IoT device i, i.e., Ti,j , it

can be described with three terms, i.e., Ti,j=(mi,j , ci,j , ai,j).
Here mi,j denotes the size of computation input data (e.g., the

program codes and input parameters), ci,j denotes the required

total CPU cycles to accomplish the task Ti,j . Let ai,j = {0}∪S
denote the offloading decision of the j-th computation subtask

of IoT device i, where ai,j=0 means the IoT device i chooses

to execute the subtask Ti,j locally with its own CPU, ai,j=k,

∀k ∈S means that Ti,j will be offloaded to the k-th server

for execution. It is worth mentioning that some subtasks are

forced to execute locally. For example, in Fig. 1, as the subtask

controller needs to collect the GPS information of the device,

which makes it mandatory to execute the task locally. Note

that if IoT device i decides to offload part of its subtask to

server k, all the other subtasks at IoT device i to be offloaded

can only select server k as the destination server. We adopt

Ai={ai,1,ai,2,...ai,vi} to represent the offloading decision for

device i. Let ai be an indicator to denote where IoT device i
execute its subtasks. ai is obtained as:

ai =

{
0 if the application executed locally
k at least one subtask offload to server k

(1)

For a given decision profile a=(a1, a2, .., aN) of all the de-

vices, we can compute the uplink data rate between IoT device

i and edge server k as follows:

ri,k(a) = Blog2(1 +
qigi,k

� +
∑

i′∈N :ai=a′
i
qi′gi′,s

) (2)

Here B denotes the channel bandwidth, qi is device i′s
transmission power, and gi,k means channel gain for the link

between device i′s and edge server k. � denotes background

noise power.
∑

i′∈N :ai=a′
i
qi′gi′,s denotes the wireless interfer-

ence suffered from other IoT devices with the same offloading

server. It is worth noting that IoT devices keep connected with

the edge servers as long as there is at least one subtask needs to

offload to it. Here our main focus is exploring the computation

offloading problem under the wireless interference model, the

other communication model and link features [30] are also

potentially suitable for our work.

The computation subtask can be handled locally or offloaded

to one of the edge servers for processing. Thus we will discuss

the subtask processing time and energy consumption for both

local and edge computing.

1) Local Computing: For local computing approach, let

f l
i be the computation capability of IoT device i. Then the

local execution time of subtask Ti,j is given by:

tli,j = ci,j/f
l
i (3)

Next, we can obtain the energy consumption for local

subtask as:

eli,j = δlici,j (4)

where δ is the energy consumption per CPU cycle in IoT

device i.
2) Edge Computing: In our scenario, the computation

capability of different servers are heterogeneous. Let fk denote

the computation capability of server k. For the computation

offloading, the subtask would incur extra overhead in terms

of time and energy for transmitting the task data to the edge

via wireless access. According to the communication model

in Eq. (2). The total latency of subtask Ti,j in edge server k
is achieved by:

tki,j = mi,j/ri,k((a)) + tk,Queue
i,j + ωk

i,j (5)

ωk
i,j = ci,j/f

k (6)

Here, mi,j /ri,k((a)) is the transmission time invoked by the

task offloading, and ωk
i,j represents the execution time in edge

server k. tk,Queue
i,j denotes the queuing time, which depends

not only on the completion time of its predecessors but also

on the task scheduling of subtasks offloaded by other users

(Detailed discussion in Section 4). From Eq. (5) we can see

that, we need to arrange the offloading strategy for each

subtask of each device reasonably to minimize the delay of

the whole system. On the other hand, from a distributed

perspective, each IoT devices should make a rational decision

to mitigate interference on the wireless channel and avoid long

IEEE INTERNET OF THINGS JOURNAL 5

queuing time in the edge server. The energy consumption of

the IoT device is given by:

eki,j = qimi,j/ri,k((a)) (7)

B. Problem Formulation

In this paper, to jointly consider the subtask dependency of

the application, task scheduling on the edge server, and the

multi-user wireless interference, we formulate the following

problem:

1) Subtask placement problem: To decide whether sub-

tasks should be processed locally or offloaded to the

edge servers based on the dependency among subtasks.

2) Resource scheduling problem: To order the different

subtasks of different applications to reduce the overall

delay for the global system.

Our aim is to minimize the average task duration of all the

IoT applications. Before presenting the objective function, it is

necessary to define the AST and AFT attribute. AST (j, k) and

AFT (j, k) are the actual execution start time and the actual

execution finish time of subtask j while offloading to edge

server k. In order to compute the AST of task j, all immediate

predecessor subtasks of j must have been scheduled, thus its

value is computed recursively, starting from the entry task:

AST (j, k) = max{avail{0∪[k]}, max
j′∈pred(j)

(AFT (j′)+Cjj′)}
(8)

where pred(j) is the set of immediate predecessor subtasks of

subtask j. Cj,j′ denotes the communication cost of edge(j, j′),
which is incurred by transferring data from subtask j′ to

subtask j (more details can be found in Section 4). Thus inner

max block in the equation returns the ready time when all

data needed by subtask j has arrived at edge server k. After

meeting the inter-dependency between tasks, let avail[k] ∪ 0
be the earliest at which server k or local CPU is ready for

the task execution, i.e, the earliest time when the CPU is idle

after the ready time of subtask j. Thus it is an insertion-based

policy which considers the possible insertion of a task on a

server. By looping through all the servers with Eq. (8), we can

get the earliest start time of subtask j. The actual execution

finish time is defined as follow:

AFT (j′) = min{ωk′
i,j +AST (j′, k′)} k′ ∈ {0} ∪ {k} (9)

where ωk′
i,j denotes the execution time in the edge server k or

in the local CPU. After all subtasks in DAGs are scheduled,

an application execution time will be calculated as the actual

finish time of exit subtask nexit (a task without any children

is called an exit task):

AFTi = AST (exit) + tLi,vi (10)

Without loss of generality, the final task is in charge of

collecting the execution result. Hence, it is always executed on

local devices. We utilize tLi,vi to represent the execution time

of the last subtask of IoT device i. After we obtain the actual

finish time of each application, the task offloading problem

can be formulated as follows:

Opt : Minimizeai,j∈[S]N (

N∑
i=1

AFTi) ∀i ∈ N ∀j ∈ Vi (11)

s.t Costi ≤ B ∀i ∈ N (12)

Costi =

vi∑
j=1

xjci,jδi + (1− xj)qi
mi,j

ri,k(a)
(13)

Our goal is to find a task assignment strategy for all subtasks

from different IoT devices, to minimize the total latency and

satisfies the cost constraints (defined in Eq. (12)). xj denotes

whether the subtask is executed locally (xj = 1) or not

(xj = 0). This optimization problem is NP-hard (according

to Theorem 1). In the following Sections, we will propose

heuristic algorithms to solve our offloading problem efficiently.

Theorem 1. Problem Opt is NP-hard

Proof. We reduce our problem to the 0-1 knapsack problem.

We simplify Opt to the problem, where there are only one IoT

device and one edge server, then a binary partition is made

on a serial task graph without considering data transmission

between local an edge server. Thus the cost of transmission

can be neglected. Our problem can be written as:

Opt’ : Minxi∈{0,1}
Vi∑
j=1

(1− xi)ω
k
i,j + xit

L
i,j) (14)

s.t

vi∑
j=1

xjci,jδ ≤ B (15)

Give N items with their value{v1, ...vN}, and weight

{w1, ...wN}, the 0-1 knapsack problem can be formulated as:

Knap : maxxi∈{0,1}
N∑
i=1

xivi (16)

s.t.
N∑
i=1

xiwi ≤ B (17)

Now Knap can be reduced to Opt’ by the following assump-

tion:

ωk
i,k = 0 (18)

tLi,j = −vi (19)

ci,jδ = wi (20)

IEEE INTERNET OF THINGS JOURNAL 6

IV. SUBTASK OFFLOADING STRATEGY

In this section, we present an efficient task offloading

scheme according to the optimization problem defined in

Eq. (11). We first propose the EFO (Earliest-Finish time

Offloading) algorithm for the single-user MEC system with

only one edge server, which depends on not only the com-

putation workload of the subtask but also the dependency

relationship among subtasks in DAGs. We further extend the

above EFO algorithm to the multi-user MEC systems with

heterogeneous servers, aiming to coordinate the competition

of communication and computation among multiple users.

Moreover, to improve the efficiency of offloading decisions,

we discuss on a distributed computation offloading algorithm

to perform offloading decisions in a lightweight manner.

A. The EFO Algorithm

For the single-user MEC systems with only one server, the

key issue is to schedule subtasks to make the latency as short

as possible while meeting the task dependency requirement.

There are two main problems to be resolved:

1) Ordering subtasks by priorities: In our work, the

application always consists of a series of subtasks,

which are often described by DAGs. How to order the

subtasks by priorities is crucial. We cannot reverse the

order of execution where there are task dependency

relationships. Besides, changing the execution order of

parallel subtasks can also impact the total latency. For

example, if we execute the subtask Traffic before the

subtask Map, the computation time of navigator will

be increased to 7.67ms (Note that we still keep the

capability proportion of edge server and local CPU). As

a result, we need to set the priority of each subtask and

minimize the overall delay accordingly.

2) Processor selection problem: After we obtain the

priority of each subtask, we need to schedule each

selected task on its “best” processor (local CPU or the

edge server). As shown in Fig. 1(c), if we select the

subtask Traffic as a prior one but inappropriately upload

it the edge server and execution subtask Map locally.

As a result, the computation time of navigator will also

increase to 7.67ms.

As discussed before, an application of IoT device is repre-

sented by a directed acyclic graph, G = (V,E). Let Data be

a matrix of communication data, where dataj′,j is the amount

of data required to be transmitted from subtask j′ to subtask

j. And the communication cost of edge(j′, j) is defined by:

cj′,j =

{
0 if ai,j = ai,j′

dataj′,j/ri,k(a) otherwise
(21)

when both subtask j and j′ are scheduled on the same

processor, cj,j′ becomes zero since we assume that the intra-

processor communication cost is negligible. The average com-

munication cost of edge(j, j′) is defined by

cj,j′ = dataj′,j/(2ri,k(a)) (22)

The average execution cost of a subtask j is defined as

wk
i,j = (wk

i,j + tli,j)/2 (23)

It should be explained that wk
i,j denotes the average execution

time of the subtask j. Parameters i and k are used in the

next subsection, which denote the IoT device i and server k
respectively in the multi-user and multi-server scenarios.

Subtask j is ordered in our algorithms by their scheduling

priorities that are defined by the equation:

rank(j) = wk
i,j + max

j′∈Succ(j)
(cj,j′ + rank(j′)) (24)

where Succ(j) is the set of the immediate successor of task

j. rank(j) is the length of the critical path from task j to

the exit task. The higher the value, the higher the priority.

For example in Fig. 1, rank(traffic) = (3+2.67)/2+0.5+1

equal to 4.33ms, and rank(Map) =(3+2)/2+0.5+1 equal to

4ms, thus we should schedule the subtask Traffic at first. After

ordering the priority of subtask, we then assign the subtask

Traffic on its “best” processor, base on AST (j) Eq. (8) and Eq.

(9): AST(traffic,local)=max{1ms,1ms} +4ms and AST(traffic,
server k) = max{0ms, (1+2)ms}+2.67ms. Therefore, the sub-

task should be executed locally.

The EFO algorithm is as follows:

Algorithm 1 The EFO (earliest finish-time offloading) Algo-

rithm

1.Input:G = (V,E), Datai,j , mi,j , ci,j ,f l
i ,fk

i

2.Output: The server scheduling result, the total latency of

the application

3. Sort the priority of all subtasks with Eq. 24 by non-

increasing order

4. while there are unscheduled subtasks do

5. choose the subtask i with the highest priority;

6. compute the (AFT (i)) with Eq. 9 both in the edge

server and local;

7 if AFTlocal(i) ≤AFTserver(i)
8. assign subtask i to local

9. else
10. assign subtask i to edge server

11. end if;
12. end while

B. The EFO Algorithm in a multi-user scenario with multiple
servers

In the next-generation network infrastructures (e.g., ultra-

dense network, multi-access network), multiple heterogeneous

edge servers can be deployed in the edge network to provide

computation services to different users. As a result, in this

subsection, we extend the EFO algorithm to the multi-user

scenario with multiple servers. When different users offload

their computing tasks, they have little information about the

wireless channel conditions and the computation load of the

edge servers, since they have no access to the offloading strate-

gies of all other users. The strategy information includes which

servers they choose, how many subtasks they will upload and

the task scheduling in edge servers. Fortunately, a new network

IEEE INTERNET OF THINGS JOURNAL 7

paradigm SDWN (Software Defined Wireless Network) can

achieve logically centralized control of the distributed IoT

devices [31]. By utilizing the SDWN technology, each IoT

device uploads its task-related DAGs and the local processing

capacities to the controller at the beginning. Then the SDWN

controller will determine where (different server) and when

(task scheduling) to executed these subtasks which belong to

different users.

The centralized EFO algorithm for multi-user and multi-

server is shown in Algorithm 2.

Algorithm 2 The Centralize EFO Algorithm

1.Input: N , S , Gi = (Vi, Ei), Data, mi,j , ci,j ,f l
i ,fk

i

2.Output: The offloading strategy for different users, subtasks

scheduling in each processor and the minimum latency of all

the users

3.enumerate all optional offloading decision AL={a1,a2...,an}
4. for all ai ∈ AL do

5. for all server k ∈ S do

6. Create the user group Uk, in which ai = k
7. integrate Gi of the users in Uk to Guk

8. Update the transmission delay ri,k(a)
9. Call EFO algorithm to obtain the subtask scheduling

. in server k and local processor

10. end for all
11. Compute the overall computation delay for offloading

. strategy ai
12. end for all
13.find the optimal offloading strategy a and its related sub-

task scheduling in each processor, which has the minimum

computation delay for all the users

In the centralized EFO algorithm, we first enumerate all

the optional offloading decisions. Let ai denote one available

offloading choice of all users. For each offloading scheme,

we regard the task graphs of the users that offload to the same

server as an integrated DAG by the union of the graph, thus we

employ the EFO algorithm to obtain the overall computation

delay of the scheme. Now we get to know the latency for each

different offloading scheme. Finally, the offloading scheme

with minimum latency is selected as the offloading strategy.

According to Theorem 2, the convergence time of algorithm

2 will grows rapidly with the increase in the number of users

and servers. We will then discuss and design a distributed

computation offloading algorithm in order to improve the

efficiency of the offloading decisions.

Theorem 2. The computational complexity of CEFO in

Algorithm 2 is O[(S + 1)N · (n + e)], where S and N are

the numbers of edge servers and IoT devices, respectively. n
and e denote the number of a subtask and the edge of DAG.

Proof. The optional offloading strategies with S user and N

edge server is equal to:

(
0
N

) · S0 +
(
1
N

) · S1 +
(
N
N

) · SN =

p∑
i=0

(
p
N

) · Sp (25)

where p denotes the number of users which decide to offload

their tasks. According to Newton’s binomial theorem:

i∑
i=0

(
p
N

) · Sp = (S + 1)N (26)

Every optional offloading strategy needs to call the EFO

algorithms to obtain the server scheduling result. The com-

putational complexity of the first step in EFO is O(n + e),
if the DAG is store in Adjacency List. At the computational

complexity of the second step in EFO is O(n). Therefore the

computational complexity of CEFO is equal to [O(S + 1)N ·
(n+ e)]

C. The distributed EFO algorithm

The centralized computational offloading strategy discussed

in the above section would cause considerable overhead when

the users and servers increase, thus it may be challenging

to implement in ultra-dense IoT and edge networks. Even

worse, it would possibly lead to system fails if the controller

in a hardware failure. Moreover, as different IoT devices are

usually owned by different vendors, it is hard to create the

same standard for a variety of products. These factors inspire

us to design a distributed computation offloading scheme. By

the distributed methods, each IoT device can make the decision

locally based on the information they collect (e.g., the channel

conditions broadcasted by the edge servers). In our work, we

adopt a game theoretic approach to coordinate competition

among multiple users. Game theory is a powerful tool for

devising distributed mechanisms with low complexity. In a

game theory based offloading strategy among multi-user and

multi-server, at each step a rational user react to other players’

actions in the previous steps, and makes a locally optimal

decision. After finite steps, all the users can self-organize into

a mutual equilibrium state: the Nash equilibrium. In such a

state no user can further reduce its delay by changing its

strategy unilaterally. Let a−i denote the computation offload-

ing decisions of all the users except for user i. Given other

user’s strategies, user i would like to choose a locally optimal

offloading decision for all its subtasks, by adopting which its

overall delay can be minimized:

Minimize AFTi(ai, a−i) (27)

In the initialization step of DEFO (distributed EFO) (line
3), each device executes all its subtasks locally. During every

iteration, each device calls Algorithm 1 to compute its AFT
and offload tasks to different servers, based on the offloading

result of the last iteration (line 5-9). In line 10, by utilizing

the coordination and agreement algorithms in [32], the IoT

devices vote on only one user with the greatest gain then the

corresponding server broadcasts the offloading result of this

iteration to all users(line 11-16). This process goes recursively.

After finite iterations, the system finally achieves the Nash

Equilibrium and we can obtain the offloading schemes for all

IoT devices (line 11-12).

We try to explain our DEFO algorithm with an example

shown in Fig. 2. There are three IoT devices and two edge

servers in the network. The DAGs of the applications are

IEEE INTERNET OF THINGS JOURNAL 8

User1

User2

User3

User1

User2

User3

11
22

33
44

11 22 33

11 22
33

44
55

User1

User2

User3

11
22

33
44

11 22 33

11 22
33

44
55

Server1

Server2

Local1

Local2

Local3

4

1 2 3

1

2

5

1 3

4

2

3

2

Server1

Server2

Local1

Local2

Local3 1

4

4

1 2 3

1

2

5

31 3

3

4

2

3

22222

Server1

Server2

Local1

Local2

Local3

111 4

1 3

2

1

3

2 42 4

2

53 53

Server1

Server2

Local1

Local2

Local3

1 3

1

11 44

1 3

2

1

33

2

42 4

2

533

Server1

Server2

Local1

Local2

Local3

111 4

1 3

1

2

2 42 42 4

2

53 53 53

3

Server1

Server2

Local1

Local2

Local3

1 3

1

11 4

1 3

1

22

2 4222 4

22

53 533

3

(a) The DAG of apps (b) The 2th iteration (c) The 3rd iteration (d) The equilibrium state

Fig. 2. Case Study of distributed EFO

Algorithm 3 The distributed EFO Algorithm

1.Input: N , S , Gi = (Vi, Ei), Data, mi,j , ci,j ,f l
i ,fk

i

2.Output: The offloading strategy for different users, subtasks

scheduling in each processor and the minimum latency of all

the users

3.Initialize: a(0)={0,0,0,...0} all the users execute locally

4.for each decision slot t do

5. for all i ∈ N do

6. for all k ∈ S do

7. call EFO algorithm to compute AFTi,k, base on

. ri,k(a) and schedule result on server k at (t-1)

8. end for
9. end for
10.Find only one user i and the corresponding server k to

achieve the maximum delay reduction

11. if Gain=1 then
12. return a(t)
13. end if
14.update a(t) and the task scheduling result on related server

15.update ri,k(a) based on a(t)
16.The related server broadcast its scheduling result and

ri,k(a)
17.end for

shown in Fig. 2(a). The initialization step of DEFO (line 3),

each device executes all its subtasks locally. During the first

iteration, every device calls the EFO algorithm to compute

AFT according to a different target server for offloading (line
4-8). Note that at this iteration, every device assumes that

there is no interference in the wireless channel and no other

subtask executed on the edge server. And then the controller

will choose user3 to offload their subtask at server1 as

it achieves the maximum delay reduction compared to the

local execution time(line 10). In (line 14-16), user3 executes

the EFO algorithm and offload subtask2 and subtask4 to

server1. Then the server server1 will broadcast the schedul-

ing results and its wireless channel rates ri,k(a) to all the

IoT devices, which then facilitate the users to make further

choices in the next iteration. In the second iteration, user1
wins the updated opportunity as shown in the Fig. 2(b),

and server2 will broadcast the update information about the

task scheduling result and wireless channel. In Fig. 2(c) user

user2 upload subtask2 to server2 according to the previous

broadcast information. In final equilibrium state (Fig. 2(d)),

since every user cannot further reduce its computation delay

by changing its strategy unilaterally, Gain = 1 in line 11, the

DEFO algorithm is then terminated.
We can see that with the above distributed EFO algorithm,

each IoT device can implicitly take others’ information into

account and adjust its own offloading strategies accordingly.

A possible drawback is that the convergence time may adds

further overhead to the offloading system. We argue that this

process incurs only an initial delay as normally the task

DAGs do not change drastically for a given IoT system. Once

the process is finished, each IoT device can perform their

offloading decisions to reduce the overall task delay.

V. EVALUATION

In this section, we evaluate the performance of the proposed

offloading strategies. We study the performance improvements

in different scenarios and the convergence time of the dis-

tributed EFO allocation algorithms in different conditions. We

also compare the distributed EFO algorithm with the existing

work, potential game based offloading algorithm (PGOA) in

[20].

A. Experimental settings
We consider a multi-user MEC scenario in an ultra-dense

IoT network (UDN) [33], where multiple IoT devices are

randomly distributed in a 1km × 1km area with some het-

erogeneous edge servers. The UDN network is emerging as

one of core characteristics for 5G cellular networks [34],

which introduces a new coverage environment where many

edge servers are in the vicinity of a given IoT device. As a

result, there are multiple choices of offloading destinations for

each user to upload their subtasks. Our goal is to assign all

subtasks from different IoT devices to the most appropriate

edge servers to minimize the total latency. For simplicity, we

make the following experimental settings.

• Each edge server/IoT device is equipped with one CPU.

• Each IoT device request one service, which consists of a

series of inter-dependency subtasks to be executed with

the help of no more than one edge server.

• Whether the subtasks should be offloaded depends on

the total execution time of the entire application. More

specifically, if the overall delay of offloaded application

does not exceed the local completion time, IoT devices

will choose to execute the application locally.

• In the distributed offloading strategy, IoT devices will

continuously select the “best” edge server to offload their

subtasks to achieve the minimum delay.

IEEE INTERNET OF THINGS JOURNAL 9

5 10 15 20
The number of servers

0

50

100

150
Av

er
ag

e
de

la
y/

m
s

DEFO Algorithm
PGOA Algorithm

Fig. 3. Average delay for different
network scales

5 10 15 20 25
 The number of users

20

40

60

80

100

Av
er

ag
e

de
la

y/
m

s

DEFO Algorithm
PGOA Algorithm

Fig. 4. Average delay for different
user scales

0 10 20 30 40
The number of users

0

10

20

30

40

Th
e

nu
m

be
r o

f o
ffl

oa
di

ng
 u

se
rs DEFO Algorithm

PGAO Algorithm

Fig. 5. Offloading users for differ-
ent user scales

0 25 50 75 100 125 150
190

200

210

220

230

240

250

Av
er

ag
e

de
la

y/
m

s

U=50,S=2
U=50,S=5

U=100,S=2
U=100,S=5

Iteration num

Fig. 6. The convergence of DEFO
algorithm

• The DAG is generated according to the popular main-

stream applications such as face recognition applications

[35], pose recognition benchmarks [36] and video navi-

gation application [37]. In order to verify the feasibility

of our algorithms for various new applications, we also

randomly generate some DAGs, where the CPU cycles

required by each subtask varies from 20 Megacycles to

100 Megacycles.

• The transmission power qi=100 mWatts [38], the back-

ground noise �=-100 dBm [39] and the wireless channel

bandwidth is 20 MHZ.

• We adopt from system measurements in [40] with the

parameters of the IoT device and the cloud as follows: the

CPU frequency of the edge server (500 MHZ) is ten times

than that of IoT devices(5000 MHZ). The size of sub-

tasks and its required CPU cycles are randomly generated

between[500, 1500] KB and [0.2, 0.3] GHZ.

B. Convergence of the distributed EFO algorithm

As a game-theory based algorithm, the Nash equilibrium

and the convergence of DEFO should be guaranteed. Fig. 6

illustrates the numerical results on the convergence behavior

of DEFO with U=50, 100 S=2, 5 (U: the number of users S:

the number of edge servers). During this group of repeated

experiments, the DAG of the application is generated accord-

ing to the face recognition applications [35], pose recognition

benchmarks [36] and video navigation application [37]. These

three applications are requested by the users following the

uniform distribution. In Fig. 6, we observe that the distributed

EFO can reach a Nash equilibrium after a finite number of

iteration. We can also see that, 1) The convergence time will

increase with the number of users. 2) The increased number

of edge servers will contribute to reducing the average latency

of users, as each user faces more opportunity to upload their

subtasks, which comes with the increase of convergence time.

In edge computing systems, the applications usually have

much more strict time requirements. From the above analysis,

when the numbers of IoT devices and edge servers increase,

the convergence performance will become a bottleneck factor

for the whole system. To solve this problem, we propose two

complementary policies:

1) The convergence time is manually controlled not to

exceed a given threshold, in order to maintain the system

stability. We control the convergence time via adjusting

the iteration end time of each IoT device according to

1 2 3 4 5 6
The number of users

0

1

2

3

4

5

R
un

ni
ng

 ti
m

e/
m

s

CEFO Algorithm
DEFO Algorithm

Fig. 7. Running time

1 2 3 4 5 6
The number of users

90

100

110

120

A
ve

ra
ge

 d
el

y/
m

s

CEFO Algorithm
DEFO Algorithm

Fig. 8. Average delay

its delay requirement and execution time, i.e., before

the convergence time of the whole system, the delay-

sensitive IoT devices will stop finding a ”better” of-

floading strategy, and will then begin to execute its

subtasks. In case of a high number of IoT devices exist

in the network, in each iteration (line10 in algorithm

1) the controller will comprehensively consider the de-

lay requirement and the delay reduction by accepting

the offloading request. In this way, the delay-sensitive

applications have the priority to get the offloading op-

portunity.

2) The convergence time will also increase along with the

number of edge servers, as the IoT devices face more

opportunity to upload their subtasks. Thus we need

to finish the iteration earlier and start to execute the

application. Moreover, in each iteration of the algorithm,

only one IoT device will be selected to update its

offloading strategy. With the increasing number of edge

servers, we allow selecting multiple users to update its

offloading strategy concurrently (as long as these IoT

devices select different offloading servers). Through this

way, the convergence time can be reduced.

C. Comparison with the other schemes

In this section, we mainly compare DEFO with two different

offloading strategies in edge computing scenarios:

1) The PGOA scheme is introduced in [20], they study a

distributed computation offloading strategy for a multi-

device and multi-server system and proposed the po-

tential game-base offloading algorithm (PGOA) to solve

this problem. However, they presented an offloading

policy to decide whether an entire application should be

offloaded in order to reduce execution time. Our work

IEEE INTERNET OF THINGS JOURNAL 10

2 3 4 5 6 7
Task parallelism

30

40

50

60

70
Av

er
ag

e
de

la
y/

m
s

Fig. 9. Delay for different paral-
lelism

0 20 40 60
The number of users

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
rv

er
 C

PU
 u

til
iz

at
io

n/
%

Fig. 10. Server utilization

0 20 40 60
0

0.25

0.5

0.75

1

C
PU

 u
til

iz
at

io
n

of
 s

er
ve

rs
%

The number of subtasks

Fig. 11. Utilization for variety sub-
tasks

0 10 20 30 40 50
40

50

60

70

80

90

100

Av
er

ag
e

de
la

y/
m

s

The number of subtasks

Fig. 12. Delay for variety subtasks

considers the subtasks inside the entire applications, and

is expected to be able to identify more fine-grained

offloading opportunities.

2) CEFO: As discussed in section 4, the SDN controller

manages all the subtask offloading strategies and task

scheduling in each edge server based on global infor-

mation.

Fig. 3 shows the average task delay for different network

scales in terms of edge servers. There are thirty users in the

network. The number of the edge servers increases from two

to twenty. It can be inferred that the average delay achieved

by the distributed EFO algorithm is reduced compared to the

PGOA algorithm. Fig. 4 shows the average delay for different

user scales with the same edge network. The edge network

consists of three edge servers. The number of users grows from

2 to 25 and DAGs of applications are randomly generated.

We can see that as the number of users increases, the delay

of EFO grows slower than PGOA. Fig. 5 shows the number

of offloading users for different user scales. The offloading

decision depends on the overall execution delay. From the

perspective of mobile operators, the edge network should serve

as many users as possible. From Fig. 5 we can see that as

the number of users increases, it becomes difficult for the

edge servers to serve all the users. The main reason for the

improvements is that we deal with more fine-grained subtasks

and thus have more chance to offload subtasks to the edge

servers.

In order to verify the effectiveness of our proposed game-

theory based EFO algorithm, we compare its running time

and average delay with the centralized EFO algorithm. Fig.

7 and Fig. 8 illustrate the comparison results between them.

The X-axis denotes the number of users (IoT devices). In con-

sideration of CEFO’s exponential computational complexity,

the number of servers is set to 2, and the IoT devices from

1 to 6. As illustrated, although CEFO achieves a little higher

average delay, it has a much higher computation efficiency and

provides a workable solution in practice with a large number

of IoT devices.

Currently, we do not consider the use of deep learning

approaches as: 1) It will be extremely costly due to complex

data models and task topologies. As there are thousands

of different applications (the different relationship between

subtasks) at the edge and their requirement change rapidly.

The resource constrained IoT devices cannot afford the deep

learning cost. 2) It is hard for deep learning to understand the

causal relationship between inputs and outputs. We need to

reveal the offloading opportunities from task topologies (DAG)

through theoretically analyze. In this way, we have more

opportunities to further optimize the offloading efficiency.

D. Impact of DAG properties on computation offloading

In this section, we first consider the task parallelism impact

on the average delay. In Fig. 9, the X-axis denotes the

parallelism of tasks, the degree of task parallelism is based

on the number of tasks that can be executed simultaneously.

As expected, when the parallelism of the task grows from

1 to 7, the average delay is declined to 75ms from 38ms.

Fig. 10 shows the utilization of the server for different user

scales. The DAG of each task consists of ten subtasks. We

can observe that, when the number of users increases to

30, the server resource utilization no longer increase (up to

62%). This simulation result can be used to guide the edge

server deployment for a given number of users. Through our

simulation, we propose an effective method to further improve

resource utilization shown in Fig. 11. There are 30 users

in the network and the number of subtasks for each user

increases from 2 to 60. In particular, although the number of

subtask increases, the computing resources required by each

user remain unchanged. It can also be inferred that through

partitioning the application into more subtasks (in a more

fine-granularity way), the utilization of server can be further

improved. More importantly, the average delay can be reduced

through fine-grained task partition as shown in Fig. 12.

Through analyzing the characteristics of the results shown

in Figure 9-12, we further elucidate the target applications in

our system model: 1) The parallelism among the subtasks in

the application is larger than one. Otherwise, our offloading

strategy is equal to the IHRA in [14], in which the authors

consider that the application consists of a series of sequential

subtasks. 2) The higher parallelism of application can lead

to reduced execution time. In our further work, we can split

the application into more parallel modules according to [41].

Our offloading strategy can speed up the execution of some

parallel machine learning algorithms by utilizing their high

degree of parallelism [42]–[44]. For example, in [42], the

authors developed GraphLab, which improves MapReduce

by compactly expressing asynchronous iterative algorithms

with sparse computational dependencies and achieving a high

degree of parallel performance.

IEEE INTERNET OF THINGS JOURNAL 11

VI. CONCLUSION

In this paper, we provide a fine-grained offloading strategy

in edge computing for IoT systems. By jointly considering

the dependency among subtasks and the contention among

multiple edge users, we propose a novel offloading scheme to

reduce the overall completion time of the IoT applications. We

also discuss the distributed algorithms for resource constrained

IoT devices and its convergence. We conduct simulation

experiments and the results show that the proposed work can

effectively reduce the overall application delay compared to

the existing works.

ACKNOWLEDGEMENT

This work was supported by the National Key Research

and Development Program of China (2017YFB1400102), the

National Natural Science Foundation of China (No. 61602095

and No. 61972074), the China Postdoctoral Science Founda-

tion (No. 2018M640909), the National Postdoctoral Founda-

tion for Innovative Talents (No. BX201700046), the Quacomm

Research Funds (Tsinghua) and the European FP7 under Grant

No: PIRSES-GA-2013-612652. Zhiwei Zhao and Geyong Min

are the coresponding authors.

REFERENCES

[1] L. Aceto, A. Morichetta, and F. Tiezzi, “Decision support for mobile
cloud computing applications via model checking,” in Proceedings
of 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering. IEEE, 2015, pp. 199–204.

[2] W. Sun, J. Liu, and H. Zhang, “When smart wearables meet intelligent
vehicles: Challenges and future directions,” IEEE wireless communica-
tions, vol. 24, no. 3, pp. 58–65, 2017.

[3] M. Erol-Kantarci and S. Sukhmani, “Caching and computing at the edge
for mobile augmented reality and virtual reality (ar/vr) in 5g,” in Ad Hoc
Networks. Springer, 2018, pp. 169–177.

[4] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 workshop on mobile
big data. ACM, 2015, pp. 37–42.

[5] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User
mobility aware task assignment for mobile edge computing,” Future
Generation Computer Systems, vol. 85, pp. 1–8, 2018.

[6] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and F. Li,
“Edge provisioning with flexible server placement,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1031–1045,
2016.

[7] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[8] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3435–3447, 2017.

[9] Q. Fan, H. Yin, L. Jiao, Y. Lv, H. Huang, and X. Zhang, “Towards
optimal request mapping and response routing for content delivery
networks,” IEEE Transactions on Services Computing, 2018.

[10] Z. Zhao, G. Min, W. Gao, Y. Wu, H. Duan, and Q. Ni, “Deploying edge
computing nodes for large-scale iot: A diversity aware approach,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3606–3614, 2018.

[11] X. Zhang, H. Huang, H. Yin, D. O. Wu, G. Min, and Z. Ma, “Resource
provisioning in the edge for iot applications with multi-level services,”
IEEE Internet of Things Journal, 2018.

[12] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[13] I. Lee and K. Lee, “The internet of things (iot): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, vol. 58, no. 4,
pp. 431–440, 2015.

[14] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled internet of
things,” IEEE Internet of Things Journal, 2018.

[15] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[16] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data transfer
for graph processing in geo-distributed datacenters,” in Proceedings
of 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1397–1407.

[17] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-distributed
datacenters with max-min fairness,” IEEE Transactions on Network
Science and Engineering, 2018.

[18] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[19] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[20] L. Yang, H. Zhang, X. Li, H. Ji, and V. Leung, “A distributed com-
putation offloading strategy in small-cell networks integrated with mo-
bile edge computing,” IEEE/ACM Transactions on Networking (TON),
vol. 26, no. 6, pp. 2762–2773, 2018.

[21] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas,
“Federated learning based proactive content caching in edge computing,”
in Proceedings of 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–6.

[22] E. N. Pencheva, I. I. Atanasov, P. K. Penchev, and V. G. Trifonov, “Web
service interfaces for intra-cell terminal activity,” in Proceedings of the
13th International Conference on Advanced Technologies, Systems and
Services in Telecommunications (TELSIKS). IEEE, 2017, pp. 124–127.

[23] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[24] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: A taxonomy,” in Proceedings of the Sixth International
Conference on Advances in Future Internet. Citeseer, 2014, pp. 48–55.

[25] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty,
and C.-T. Lin, “Edge of things: The big picture on the integration of
edge, iot and the cloud in a distributed computing environment,” IEEE
Access, vol. 6, pp. 1706–1717, 2018.

[26] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,” in
Proceedings of the 18th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems. ACM, 2015,
pp. 271–278.

[27] C. Shu, Z. Zhao, Y. Han, and G. Min, “Dependency-aware and latency-
optimal computation offloading for multi-user edge computing net-
works,” in Proceedings of IEEE SECON 2019. ACM, 2019.

[28] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 80–88, 2015.

[29] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in 2016 IEEE
International Conference on Communications Workshops (ICC). IEEE,
2016, pp. 638–643.

[30] Z. Zhao, W. Dong, J. Bu, T. Gu, and G. Min, “Accurate and generic
sender selection for bulk data dissemination in low-power wireless
networks,” IEEE/ACM Transactions on Networking (ToN), vol. 25, no. 2,
pp. 948–959, 2017.

[31] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[32] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
concepts and design. pearson education, 2005.

[33] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A
survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp.
2522–2545, 2016.

[34] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5g ultra-dense cellular
networks,” arXiv preprint arXiv:1512.03143, 2015.

[35] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture,” in Proceedings of 2012 IEEE symposium on
computers and communications (ISCC). IEEE, 2012, pp. 000 059–
000 066.

[36] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile

IEEE INTERNET OF THINGS JOURNAL 12

devices,” in Proceedings of the 9th international conference on Mobile
systems, applications, and services. ACM, 2011, pp. 43–56.

[37] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint schedul-
ing and cloud offloading for mobile applications,” IEEE Transactions on
Cloud Computing, 2016.

[38] E. Access, “Further advancements for e-utra physical layer aspects,”
3GPP Technical Specification TR, vol. 36, p. V2, 2010.

[39] D. Wu, J. Wang, R. Q. Hu, Y. Cai, and L. Zhou, “Energy-efficient
resource sharing for mobile device-to-device multimedia communica-
tions,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp.
2093–2103, 2014.

[40] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach, F. L. Presti, F. Gambetti,
M. Goldhamer, J. Vidal, A. K. Widiawan, and E. Calvanesse, “An
architecture for mobile computation offloading on cloud-enabled lte
small cells,” in 2014 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 2014, pp. 1–6.

[41] C.-C. Kao, “Performance-oriented partitioning for task scheduling of
parallel reconfigurable architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 858–867, 2014.

[42] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[43] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[44] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

