Difference between revisions of "Research"

From MobiNetS
Jump to: navigation, search
Line 7: Line 7:


Publications: [http://v.youku.com/v_show/id_XMzA2MjEyNDEyNA==.html youku], [https://www.youtube.com/watch?v=OZeeqFZM5_E youtube], [http://mobinets.org/research/zixor/poster.pdf poster], [http://ieeexplore.ieee.org/abstract/document/7748555/ full paper]
Publications: [http://v.youku.com/v_show/id_XMzA2MjEyNDEyNA==.html youku], [https://www.youtube.com/watch?v=OZeeqFZM5_E youtube], [http://mobinets.org/research/zixor/poster.pdf poster], [http://ieeexplore.ieee.org/abstract/document/7748555/ full paper]
|[[File:zixor.png|thumb]]
|[[File:zixor.png|thumb|link=]]
|-
|-
|'''BDTrans: Big data transfer in low power wireless.'''  
|'''BDTrans: Big data transfer in low power wireless.'''  

Revision as of 09:38, 29 August 2019

Low-power wireless

ZiXOR: Lightweight network coding for reliable communications in IoT.

Indoor IoT communications (ZigBee, BlueTooth) usually suffer from the inference from WiFi networks. We devise a lightweight yet reliable network coding system for indoor IoT communications, which incurs minimized redundancy and does not require change on the off-the-shelf devices. The system is implemented with TelosB/TinyOS nodes and significantly improves the reliability of indoor IoT applications. The erratum for the publication is here.

Publications: youku, youtube, poster, full paper

Zixor.png
BDTrans: Big data transfer in low power wireless.

The wireless applications are becoming more and more data-intensive, leading to a massive requirement on big data transfer such as video data, software update, etc. We devise two general building blocks for big data transfer in LP wireless networks. 1) Accurate sender selection: the most efficient network nodes are selected for data transfer. 2) Fast data transmission protocol: an energy-efficient transmission protocol specifically designed for transferring big data. With the modules, energy efficiency and transmission reliability are significantly improved.

Publications:poster, ToN, TIE, JSA

Bdtrans.jpg

Edge computing

ZiXOR: Lightweight network coding for reliable communications in IoT.

Indoor IoT communications (ZigBee, BlueTooth) usually suffer from the inference from WiFi networks. We devise a lightweight yet reliable network coding system for indoor IoT communications, which incurs minimized redundancy and does not require change on the off-the-shelf devices. The system is implemented with TelosB/TinyOS nodes and significantly improves the reliability of indoor IoT applications. The erratum for the publication is here.

Publications: youku, youtube, poster, full paper

Zixor.png
BDTrans: Big data transfer in low power wireless.

The wireless applications are becoming more and more data-intensive, leading to a massive requirement on big data transfer such as video data, software update, etc. We devise two general building blocks for big data transfer in LP wireless networks. 1) Accurate sender selection: the most efficient network nodes are selected for data transfer. 2) Fast data transmission protocol: an energy-efficient transmission protocol specifically designed for transferring big data. With the modules, energy efficiency and transmission reliability are significantly improved.

Publications:poster, ToN, TIE, JSA

Bdtrans.jpg

Mobile/wearable computing

ZiXOR: Lightweight network coding for reliable communications in IoT.

Indoor IoT communications (ZigBee, BlueTooth) usually suffer from the inference from WiFi networks. We devise a lightweight yet reliable network coding system for indoor IoT communications, which incurs minimized redundancy and does not require change on the off-the-shelf devices. The system is implemented with TelosB/TinyOS nodes and significantly improves the reliability of indoor IoT applications. The erratum for the publication is here.

Publications: youku, youtube, poster, full paper

Zixor.png
BDTrans: Big data transfer in low power wireless.

The wireless applications are becoming more and more data-intensive, leading to a massive requirement on big data transfer such as video data, software update, etc. We devise two general building blocks for big data transfer in LP wireless networks. 1) Accurate sender selection: the most efficient network nodes are selected for data transfer. 2) Fast data transmission protocol: an energy-efficient transmission protocol specifically designed for transferring big data. With the modules, energy efficiency and transmission reliability are significantly improved.

Publications:poster, ToN, TIE, JSA

Bdtrans.jpg