Difference between revisions of "Resource:Previous Seminars"

From MobiNetS
Jump to: navigation, search
Line 1: Line 1:
=== History ===
=== History ===
====2024====
====2024====
{{Hist_seminar
|abstract = Video analytics is widespread in various applications serving our society. Recent advances of content enhancement in video analytics offer significant benefits for the bandwidth saving and accuracy improvement. However, existing content-enhanced video analytics systems are excessively computationally expensive and provide extremely low throughput. In this paper, we present region-based content enhancement, that enhances only the important regions in videos, to improve analytical accuracy. Our system, RegenHance, enables high-accuracy and high-throughput video analytics at the edge by 1) a macroblock-based region importance predictor that identifies the important regions fast and precisely, 2) a region-aware enhancer that stitches sparsely distributed regions into dense tensors and enhances them efficiently, and 3) a profile-based execution planer that allocates appropriate resources for enhancement and analytics components. We prototype RegenHance on five heterogeneous edge devices. Experiments on two analytical tasks reveal that region-based enhancement improves the overall accuracy of 10-19% and achieves 2-3x throughput compared to the state-of-the-art frame-based enhancement methods.
|confname =NSDI'25
|link = https://arxiv.org/pdf/2407.16990
|title= Region-based Content Enhancement for Efficient Video Analytics at the Edge
|speaker=Xinyan
|date=2025-03-07
}}{{Hist_seminar
|abstract = Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at this https URL
|confname =AAAI'22
|link = https://arxiv.org/abs/2112.02466
|title= Pose-guided Feature Disentangling for Occluded Person Re-identification Based on Transformer
|speaker=Bairong
|date=2025-03-07
}}
{{Hist_seminar
{{Hist_seminar
|abstract = The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability..
|abstract = The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability..

Revision as of 02:44, 14 March 2025

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}