Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Obtaining urban-scale vehicle trajectories is essential to understand the urban mobility and benefits various downstream applications. The mobility knowledge obtained from existing vehicle trajectory sensing techniques is typically incomplete. To fill the gap, we propose F3VeTrac , an efficient deep-learning-based vehicle trajectory recovery system that utilizes complementary characteristics of the Camera Surveillance System and the Vehicle Tracking System to obtain fine-grained, fully-road-covered, and fully-individual-penetrative ( F3 ) trajectories. F3VeTrac utilizes five well-designed modules to model the co-occurrence relationships hidden in both coarse-grained and fine-grained trajectories from the two complementary sensing systems and fuse them to recover the coarse-grained trajectories. We implement and evaluate F3VeTrac with two real-world datasets from over 100 million regular vehicle trajectories and 16 million commercial vehicle trajectories in two cities of China, together with an on-field case study based on 251 regular vehicle trajectories collected by 17 volunteers, demonstrating its great advantages over six state-of-the-art alternative schemes. Source codes are available in https://github.com/UrbanComp-BUPT/F3VeTrac . Moreover, we present a downstream application of F3VeTrac for traffic condition estimation, which obtains obvious performance gains.
|abstract=Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.
|confname=TMC '23
|confname=SIGCOMM 2020
|link=https://ieeexplore.ieee.org/abstract/document/10209220
|link=https://dl.acm.org/doi/10.1145/3387514.3405853
|title=F3VeTrac: Enabling Fine-grained, Fully-road-covered, and Fully-individual penetrative Vehicle Trajectory Recovery
|title=Concurrent Entanglement Routing for Quantum Networks: Model and Designs
|speaker=Zhenguo
|speaker=Yaliang
|date=2023-11-30}}
|date=2024-04-28}}
{{Latest_seminar
|abstract=In cloud gaming, interactive latency is one of the most important factors in users' experience. Although the interactive latency can be reduced through typical network infrastructures like edge caching and congestion control, the interactive latency of current cloud-gaming platforms is still far from users' satisfaction. This paper presents ZGaming, a novel 3D cloud gaming system based on image prediction, in order to eliminate the interactive latency in traditional cloud gaming systems. To improve the quality of the predicted images, we propose (1) a quality-driven 3D-block cache to reduce the "hole" artifacts, (2) a server-assisted LSTM-predicting algorithm to improve the prediction accuracy of dynamic foreground objects, and (3) a prediction-performance-driven adaptive bitrate strategy which optimizes the quality of predicted images. The experiment on the real-world cloud gaming network conditions shows that compared with existing methods, ZGaming reduces the interactive latency from 23 ms to 0 ms when providing the same video quality, or improves the video quality by 5.4 dB when keeping the interactive latency as 0 ms.
|confname=SIGCOMM '23
|link=https://dl.acm.org/doi/pdf/10.1145/3603269.3604819
|title=ZGaming: Zero-Latency 3D Cloud Gaming by Image Prediction
|speaker=Wenjie
|date=2023-11-30}}
{{Latest_seminar
|abstract=Given the central role mobile core plays in supporting mobile network operations, the efficiency, cost-effective dynamic scalability and resilience of the core control plane are paramount. Achieving these goals, however, presents two main challenges: (i) decoupling core network state from processing; (ii) decoupling control plane processing in the core from its interface to the radio access network (RAN). To overcome them, we present CoreKube, a novel message focused and cloud-native mobile core system design, which features truly stateless workers (processing units) that interface with a common database (to hold the core network state) and with the RAN through a frontend. The fully stateless and generic nature of the workers to process any control plane message enables efficient message handling. Orchestration of containerized CoreKube components using Kubernetes, allows leveraging the latter's autoscaling and self-healing properties. We develop 4G and 5G standard-compliant CoreKube implementations, exploiting the agile development methodology enabled by CoreKube's message focused design. Results from our extensive experimental evaluations over the Powder platform relative to prior art show that CoreKube efficiently processes control plane messages, scales dynamically while using minimal compute resources and recovers seamlessly from failures.
|confname=MobiCom '23
|link=https://dl.acm.org/doi/abs/10.1145/3570361.3592522
|title=CoreKube: An Efficient, Autoscaling and Resilient Mobile Core System
|speaker=Qinyong
|date=2023-11-30}}
{{Latest_seminar
|abstract=Maximum target coverage by adjusting the orientation of distributed sensors is an important problem in directional sensor networks (DSNs). This problem is challenging as the targets usually move randomly but the coverage range of sensors is limited in angle and distance. Thus, it is required to coordinate sensors to get ideal target coverage with low power consumption, e.g. no missing targets or reducing redundant coverage. To realize this, we propose a Hierarchical Target-oriented Multi-Agent Coordination (HiT-MAC), which decomposes the target coverage problem into two-level tasks: targets assignment by a coordinator and tracking assigned targets by executors. Specifically, the coordinator periodically monitors the environment globally and allocates targets to each executor. In turn, the executor only needs to track its assigned targets. To effectively learn the HiT-MAC by reinforcement learning, we further introduce a bunch of practical methods, including a self-attention module, marginal contribution approximation for the coordinator, goal-conditional observation filter for the executor, etc. Empirical results demonstrate the advantage of HiT-MAC in coverage rate, learning efficiency, and scalability, comparing to baselines. We also conduct an ablative analysis on the effectiveness of the introduced components in the framework.
|confname=NeurIPS '20
|link=https://proceedings.neurips.cc/paper/2020/hash/7250eb93b3c18cc9daa29cf58af7a004-Abstract.html
|title=Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks
|speaker=Jiahui
|date=2023-11-30}}
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:45, 28 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM 2020] Concurrent Entanglement Routing for Quantum Networks: Model and Designs, Yaliang
    Abstract: Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}