Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(35 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-11-1 10:30-12:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Sparsely-activated Mixture-of-Expert (MoE) layers have found practical applications in enlarging the model size of large-scale foundation models, with only a sub-linear increase in computation demands. Despite the wide adoption of hybrid parallel paradigms like model parallelism, expert parallelism, and expert-sharding parallelism (i.e., MP+EP+ESP) to support MoE model training on GPU clusters, the training efficiency is hindered by communication costs introduced by these parallel paradigms. To address this limitation, we propose Parm, a system that accelerates MP+EP+ESP training by designing two dedicated schedules for placing communication tasks. The proposed schedules eliminate redundant computations and communications and enable overlaps between intra-node and inter-node communications, ultimately reducing the overall training time. As the two schedules are not mutually exclusive, we provide comprehensive theoretical analyses and derive an automatic and accurate solution to determine which schedule should be applied in different scenarios. Experimental results on an 8-GPU server and a 32-GPU cluster demonstrate that Parm outperforms the state-of-the-art MoE training system, DeepSpeed-MoE, achieving 1.13× to 5.77× speedup on 1296 manually configured MoE layers and approximately 3× improvement on two real-world MoE models based on BERT and GPT-2.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname =INFOCOM‘24
|confname = Mobisys'24
|link = https://ieeexplore.ieee.org/abstract/document/10621327
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title= Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Mengqi
|speaker= Zhenhua
|date=2024-11-1
|date=2025-04-18
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = HD map is a key enabling technology towards fully autonomous driving. We propose VI-Map, the first system that leverages roadside infrastructure to enhance real-time HD mapping for autonomous driving. The core concept of VI-Map is to exploit the unique cumulative observations made by roadside infrastructure to build and maintain an accurate and current HD map. This HD map is then fused with on-vehicle HD maps in real time, resulting in a more comprehensive and up-to-date HD map. By extracting concise bird-eye-view features from infrastructure observations and utilizing vectorized map representations, VI-Map incurs low compute and communication overhead. We conducted end-to-end evaluations of VI-Map on a real-world testbed and a simulator. Experiment results show that VI-Map can construct decentimeter-level (up to 0.3 m) HD maps and achieve real-time (up to a delay of 42 ms) map fusion between driving vehicles and roadside infrastructure. This represents a significant improvement of 2.8× and 3× in map accuracy and coverage compared to the state-of-the-art online HD mapping approaches. A video demo of VI-Map on our real-world testbed is available at https://youtu.be/p2RO65R5Ezg.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=Mobicom'23
|confname = TC'24
|link = https://dl.acm.org/doi/abs/10.1145/3570361.3613280
|link = https://ieeexplore.ieee.org/document/10360355
|title= VI-Map: Infrastructure-Assisted Real-Time HD Mapping for Autonomous Driving
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Wangyang
|speaker=Mengfan
|date=2024-11-1
|date=2025-04-18
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}