Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(27 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-11-8 10:30-12:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we revisit the problem of the current routing system in terms of prediction scalability and routing result optimality. Specifically, the current traffic prediction models are not suitable for large urban networks due to the incomplete information of traffic conditions. Besides, existing routing systems can only plan the routes based on the past traffic conditions and struggle to update the optimal route for vehicles in real-time. As a result, the actual route taken by vehicles is different from the ground-truth optimal path. Therefore, we propose a Just-In-Time Predictive Route Planning framework to tackle these two problems. Firstly, we propose a Travel Time Constrained Top- kn Shortest Path algorithm which pre-computes a set of candidate paths with several switch points. This empowers vehicles to continuously have the opportunity to switch to better paths taking into account real-time traffic condition changes. Moreover, we present a query-driven prediction paradigm with ellipse-based searching space estimation, along with an efficient multi-queries handling mechanism. This not only allows for targeted traffic prediction by prioritizing regions with valuable yet outdated traffic information, but also provides optimal results for multiple queries based on real-time traffic evolution. Evaluations on two real-life road networks demonstrate the effectiveness and efficiency of our framework and methods.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname =ICDE'24
|confname = Mobisys'24
|link = https://ieeexplore.ieee.org/document/10598147/authors#authors
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title= A Just-In-Time Framework for Continuous Routing
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Zhenguo
|speaker= Zhenhua
|date=2024-11-8
|date=2025-04-18
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Many networking tasks now employ deep learning (DL) to solve complex prediction and optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the powerful pre-trained knowledge, the LLM is promising to serve as the foundation model to achieve "one model for all tasks" with even better performance and stronger generalization. In pursuit of this vision, we present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems. Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers. Besides, NetLLM drastically reduces the costs of fine-tuning the LLM to acquire domain knowledge for networking. Across three networking-related use cases - viewport prediction, adaptive bitrate streaming and cluster job scheduling, we showcase that the NetLLM-adapted LLM significantly outperforms state-of-the-art algorithms.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname =SIGCOMM'24
|confname = TC'24
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672268
|link = https://ieeexplore.ieee.org/document/10360355
|title= NetLLM: Adapting Large Language Models for Networking
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Yinghao
|speaker=Mengfan
|date=2024-11-8
|date=2025-04-18
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}