Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-01-03 10:30-12:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Volumetric videos offer a unique interactive experience and have the potential to enhance social virtual reality and telepresence. Streaming volumetric videos to multiple users remains a challenge due to its tremendous requirements of network and computation resources. In this paper, we develop MuV2, an edge-assisted multi-user mobile volumetric video streaming system to support important use cases such as tens of students simultaneously consuming volumetric content in a classroom. MuV2 achieves high scalability and good streaming quality through three orthogonal designs: hybridizing direct streaming of 3D volumetric content with remote rendering, dynamically sharing edge-transcoded views across users, and multiplexing encoding tasks of multiple transcoding sessions into a limited number of hardware encoders on the edge. MuV2 then integrates the three designs into a holistic optimization framework. We fully implement MuV2 and experimentally demonstrate that MuV2 can deliver high-quality volumetric videos to over 30 concurrent untethered mobile devices with a single WiFi access point and a commodity edge server.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname =MobiCom'24
|confname = Mobisys'24
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3649364
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title= MuV2: Scaling up Multi-user Mobile Volumetric Video Streaming via Content Hybridization and Sharing
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Jiyi
|speaker= Zhenhua
|date=2025-01-03
|date=2025-04-18
}}{{Latest_seminar
}}
|abstract = The advent of 5G promises high bandwidth with the introduction of mmWave technology recently, paving the way for throughput-sensitive applications. However, our measurements in commercial 5G networks show that frequent handovers in 5G, due to physical limitations of mmWave cells, introduce significant under-utilization of the available bandwidth. By analyzing 5G link-layer and TCP traces, we uncover that improper interactions between these two layers causes multiple inefficiencies during handovers. To mitigate these, we propose M2HO, a novel device-centric solution that can predict and recognize different stages of a handover and perform state-dependent mitigation to markedly improve throughput. M2HO is transparent to the firmware, base stations, servers, and applications. We implement M2HO and our extensive evaluations validate that it yields significant improvements in TCP throughput with frequent handovers.
{{Latest_seminar
|confname =MobiCom'24
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3690680
|confname = TC'24
|title= M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP
|link = https://ieeexplore.ieee.org/document/10360355
|speaker=Jiacheng
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|date=2025-01-03
|speaker=Mengfan
|date=2025-04-18
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}