Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-02-28 10:30-12:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability..
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname =NSDI'24
|confname = Mobisys'24
|link = https://www.usenix.org/conference/nsdi24/presentation/yan
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title= Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Youwei
|speaker= Zhenhua
|date=2025-02-28
|date=2025-04-18
}}
{{Latest_seminar
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname = TC'24
|link = https://ieeexplore.ieee.org/document/10360355
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Mengfan
|date=2025-04-18
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}