Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(293 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-09-17 8:40
|time='''2025-12-05 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Drowsy driving is one of the biggest threats to driving safety, which has drawn much public attention in recent years. Thus, a simple but robust system that can remind drivers of drowsiness levels with off-the-shelf devices (e.g., smartphones) is very necessary. With this motivation, we explore the feasibility of using acoustic sensors on smartphones to detect drowsy driving. Through analyzing real driving data to study characteristics of drowsy driving, we find some unique patterns of Doppler shift caused by three typical drowsy behaviours (i.e., nodding, yawning and operating steering wheel), among which operating steering wheels is also related to drowsiness levels. Then, a real-time Drowsy Driving Detection system named D^3 -Guard is proposed based on the acoustic sensing abilities of smartphones. We adopt several effective feature extraction methods, and carefully design a high-accuracy detector based on LSTM networks for the early detection of drowsy driving. Besides, measures to distinguish drowsiness levels are also introduced in the system by analyzing the data of operating steering wheel. Through extensive experiments with five drivers in real driving environments, D 3 -Guard detects drowsy driving actions with an average accuracy of 93.31%, as well as classifies drowsiness levels with an average accuracy of 86%.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=TMC2021
|confname =ACL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9055089
|link = https://arxiv.org/abs/2406.16441
|title=Real-Time Detection for Drowsy Driving via Acoustic Sensing on Smartphones
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Shiqi Hu
|speaker=Bairong Liu
}}
|date=2025-12-05
{{Latest_seminar
|abstract=The emerging mobile-edge computing paradigm provides opportunities for the resource-hungry mobile devices (MDs) to migrate computation. In order to satisfy the requirements of MDs in terms of latency and energy consumption, recent researches proposed diverse computation offloading schemes. However, they either fail to consider the potential computing resources at the edge, or ignore the selfish behavior of users and the dynamic resource adaptability. To this end, we study the computation offloading problem and take into consideration the dynamic available resource of idle devices and the selfish behavior of users. Furthermore, we propose a game theoretic offloading method by regarding the computation offloading process as a resource contention game, which minimizes the individual task execution cost and the system overhead. Utilizing the potential game, we prove the existence of Nash equilibrium (NE), and give a lightweight algorithm to help the game reach a NE, wherein each user can find an optimal offloading strategy based on three contention principles. Additionally, we conduct analysis of computational complexity and the Price of Anarchy (PoA), and deploy three baseline methods to compare with our proposed scheme. Numerical results illustrate that our scheme can provide high-quality services to users, and also demonstrate the effectiveness, scalability and dynamic resource adaptability of our proposed algorithm in a multiuser network.
|confname=IoTJ2021
|link=https://ieeexplore.ieee.org/abstract/document/9386238
|title=D2D-Enabled Mobile-Edge Computation Offloading for Multiuser IoT Network
|speaker=Wenjie Huang
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract=The Long Range (LoRa) protocol for low-power wide-area networks (LPWANs) is a strong candidate to enable the massive roll-out of the Internet of Things (IoT) because of its low cost, impressive sensitivity (-137dBm), and massive scalability potential. As tens of thousands of tiny LoRa devices are deployed over large geographic areas, a key component to the success of LoRa will be the development of reliable and robust authentication mechanisms. To this end, Radio Frequency Fingerprinting (RFFP) through deep learning (DL) has been heralded as an effective zero-power supplement or alternative to energy-hungry cryptography. Existing work on LoRa RFFP has mostly focused on small-scale testbeds and low-dimensional learning techniques; however, many challenges remain. Key among them are authentication techniques robust to a wide variety of channel variations over time and supporting a vast population of devices.In this work, we advance the state of the art by presenting (i) the first massive experimental evaluation of DL RFFP and (ii) new data augmentation techniques for LoRa designed to counter the degradation introduced by the wireless channel. Specifically, we collected and publicly shared more than 1TB of waveform data from 100 bit-similar devices (with identical manufacturing processes) over different deployment scenarios (outdoor vs. indoor) and spanning several days. We train and test diverse DL models (convolutional and recurrent neural networks) using either preamble or payload data slices. We compare three different representations of the received signal: (i) IQ, (ii) amplitude-phase, and (iii) spectrogram. Finally, we propose a novel data augmentation technique called DeepLoRa to enhance the LoRa RFFP performance. Results show that (i) training the CNN models with IQ representation is not always the best combo in fingerprinting LoRa radios; training CNNs and RNN-LSTMs with amplitude-phase and spectrogram representations may increase the fingerprinting performance in small and medium-scale testbeds; (ii) using only payload data in the fingerprinting process outperforms preamble only data, and (iii) DeepLoRa data augmentation technique improves the classification accuracy from 19% to 36% in the RFFP challenging case of training on data collected on a different day than the testing data. Moreover, DeepLoRa raises the accuracy from 82% to 91% when training and testing 100 devices with data collected on the same day.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=MobiHoc2021
|confname =TMC'25
|link=https://dl.acm.org/doi/pdf/10.1145/3466772.3467054
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=DeepLoRa: Fingerprinting LoRa Devices at Scale Through Deep Learning and Data Augmentation
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Wenliang Mao
|speaker=Mengyu
|date=2025-12-05
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}