Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminar)
 
(284 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-10-15 8:40
|time='''2025-12-05 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Low Power Wide Area Networks (LPWAN) such as Long Range (LoRa) show great potential in emerging aquatic IoT applications. However, our deployment experience shows that the floating LPWAN suffer significant performance degradation, compared to the static terrestrial deployments. Our measurement results reveal the reason behind this is due to the polarization and directivity of the antenna. The dynamic attitude of a floating node incurs varying signal strength losses, which is ignored by the attitude-oblivious link model adopted in most of the existing methods. When accessing the channel at a misaligned attitude, packet errors can happen. In this paper, we propose an attitude-aware link model that explicitly quantifies the impact of node attitude on link quality. Based on the new model, we propose PolarTracker, a novel channel access method for floating LPWAN. PolarTracker tracks the node attitude alignment state and schedules the transmissions into the aligned periods with better link quality. We implement a prototype of PolarTracker on commercial LoRa platforms and extensively evaluate its performance in various real-world environments. The experimental results show that PolarTracker can efficiently improve the packet reception ratio by 48.8%, compared with ALOHA in LoRaWAN.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=INFOCOM 2021
|confname =ACL'24
|link=https://ieeexplore.ieee.org/document/9488714
|link = https://arxiv.org/abs/2406.16441
|title=PolarTracker: Attitude-aware Channel Access for Floating Low Power Wide Area Networks
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Wenliang
|speaker=Bairong Liu
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract=Due to the limited computing capacity in mobile devices, device-to-device (D2D) computation offloading has been proposed as a promising solution to improving the quality of service in the Internet of things (IoT) networks, by allowing mobile devices to exploit spare computing resources in nearby user devices. However, a major challenge to realizing this new paradigm is how to effectively motivate user devices to participate as computation providers (CPs) for computation requesters (CRs), which is further exacerbated by the fact that user incentives are usually coupled with information asymmetry between the network operator and user devices. This has not been sufficiently studied for D2D computation offloading. In this paper, we propose a signaling-based incentive mechanism that leverages contract theory to address information asymmetry for D2D computation offloading. Based on the proposed contract-based incentive mechanism, we also solve the many-to-many CP-CR pairing problem by devising a polynomial-complexity matching scheme. Simulation results show that our proposed algorithm can effectively motivate user devices to participate in D2D computation offloading and select the most appropriate CPs to perform the computation tasks for corresponding CRs.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=IoTJ 2021
|confname =TMC'25
|link=https://ieeexplore.ieee.org/abstract/document/9523573
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=Signaling-based Incentive Mechanism for D2D Computation Offloading
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Wenjie
|speaker=Mengyu
|date=2025-12-05
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}