Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(173 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-11-25 10:20'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we present a low-maintenance, wind-powered, battery-free, biocompatible, tree wearable, and intelligent sensing system, namely IoTree, to monitor water and nutrient levels inside a living tree. IoTree system includes tiny-size, biocompatible, and implantable sensors that continuously measure the impedance variations inside the living tree's xylem, where water and nutrients are transported from the root to the upper parts. The collected data are then compressed and transmitted to a base station located at up to 1.8 kilometers (approximately 1.1 miles) away. The entire IoTree system is powered by wind energy and controlled by an adaptive computing technique called block-based intermittent computing, ensuring the forward progress and data consistency under intermittent power and allowing the firmware to execute with the most optimal memory and energy usage. We prototype IoTree that opportunistically performs sensing, data compression, and long-range communication tasks without batteries. During in-lab experiments, IoTree also obtains the accuracy of 91.08% and 90.51% in measuring 10 levels of nutrients, NH3 and K2O, respectively. While tested with Burkwood Viburnum and White Bird trees in the indoor environment, IoTree data strongly correlated with multiple watering and fertilizing events. We also deployed IoTree on a grapevine farm for 30 days, and the system is able to provide sufficient measurements every day.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=Mobicom2022
|confname =ACL'24
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3567652
|link = https://arxiv.org/abs/2406.16441
|title=IoTree: a battery-free wearable system with biocompatible sensors for continuous tree health monitoring
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Pengfei}}
|speaker=Bairong Liu
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract = With the rapid development and deployment of 5G wireless technology, mobile edge computing (MEC) has emerged as a new computing paradigm to facilitate a large variety of infrastructures at the network edge to reduce user-perceived communication delay. One of the fundamental problems in this new paradigm is to preserve satisfactory quality-of-service (QoS) for mobile users in light of densely dispersed wireless communication environment and often capacity-constrained MEC nodes. Such user-perceived QoS, typically in terms of the end-to-end delay, is highly vulnerable to both access network bottleneck and communication delay. Previous works have primarily focused on optimizing the communication delay through dynamic service placement, while ignoring the critical effect of access network selection on the access delay. In this work, we study the problem of jointly optimizing the access network selection and service placement for MEC, with the objective of improving the QoS in a cost-efficient manner by judiciously balancing the access delay, communication delay, and service switching cost. Specifically, we propose an efficient online framework to decompose a long-term time-varying optimization problem into a series of one-shot subproblems. To address the NP-hardness of the one-shot problem, we design a computationally-efficient two-phase algorithm based on matching and game theory, which achieves a near-optimal solution. Both rigorous theoretical analysis on the optimality gap and extensive trace-driven simulations are conducted to validate the efficacy of our proposed solution.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.compared to the best known related works.
|confname=TMC2022
|confname =TMC'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9373980
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=An Online Framework for Joint Network Selection and Service Placement in Mobile Edge Computing
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Kun}}
|speaker=Mengyu
{{Latest_seminar
|date=2025-12-05
|abstract = Recent years have witnessed an emerging class of real-time applications, e.g., autonomous driving, in which resource-constrained edge platforms need to execute a set of real-time mixed Deep Learning (DL) tasks concurrently. Such an application paradigm poses major challenges due to the huge compute workload of deep neural network models, diverse performance requirements of different tasks, and the lack of real-time support from existing DL frameworks. In this paper, we present RT-mDL, a novel framework to support mixed real-time DL tasks on edge platform with heterogeneous CPU and GPU resource. RT-mDL aims to optimize the mixed DL task execution to meet their diverse real-time/accuracy requirements by exploiting unique compute characteristics of DL tasks. RT-mDL employs a novel storage-bounded model scaling method to generate a series of model variants, and systematically optimizes the DL task execution by joint model variants selection and task priority assignment. To improve the CPU/GPU utilization of mixed DL tasks, RT-mDL also includes a new priority-based scheduler which employs a GPU packing mechanism and executes the CPU/GPU tasks independently. Our implementation on an F1/10 autonomous driving testbed shows that, RT-mDL can enable multiple concurrent DL tasks to achieve satisfactory real-time performance in traffic light detection and sign recognition. Moreover, compared to state-of-the-art baselines, RT-mDL can reduce deadline missing rate by 40.12% while only sacrificing 1.7% model accuracy.
}}
|confname=Sensys 2021
|link=https://dl.acm.org/doi/pdf/10.1145/3485730.3485938
|title=RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms
|speaker=Jiajun}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}