Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(161 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-06 9:30'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract =Low Power Wide Area Networks (LPWANs) have been shown promising in connecting large-scale low-cost devices with low-power long-distance communication. However, existing LPWANs cannot work well for real deployments due to severe packet collisions. We propose OrthoRa, a new technology which significantly improves the concurrency for low-power long distance LPWAN transmission. The key of OrthoRa is a novel design, Orthogonal Scatter Chirp Spreading Spectrum (OSCSS), which enables orthogonal packet transmissions while providing low SNR communication in LPWANs. Different nodes can send packets encoded with different orthogonal scatter chirps, and the receiver can decode collided packets from different nodes. We theoretically prove that OrthoRa provides very high concurrency for low SNR communication under different scenarios. For real networks, we address practical challenges of multiple-packet detection for collided packets, scatter chirp identification for decoding each packet and accurate packet synchronization with Carrier Frequency Offset. We implement OrthoRa on HackRF One and extensively evaluate its performance. The evaluation results show that OrthoRa improves the network throughput and concurrency by 50⇥ compared with LoRa.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=INFOCOM 2023
|confname =ACL'24
|link=https://www.jianguoyun.com/p/DaSn-A0Q_LXjBxjS9f8EIAA
|link = https://arxiv.org/abs/2406.16441
|title=Push the Limit of LPWANs with Concurrent Transmissions
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Wenliang}}
|speaker=Bairong Liu
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing is a promising computing paradigm enabling mobile devices to offload computation-intensive tasks to nearby edge servers. However, within small-cell networks, the user mobilities can result in uneven spatio-temporal loads, which have not been well studied by considering adaptive load balancing, thus limiting the system performance. Motivated by the data analytics and observations on a real-world user association dataset in a large-scale WiFi system, in this paper, we investigate the mobility-aware online task offloading problem with adaptive load balancing to minimize the total computation costs. However, the problem is intractable directly without prior knowledge of future user mobility behaviors and spatio-temporal computation loads of edge servers. To tackle this challenge, we transform and decompose the original task offloading optimization problem into two sub-problems, i.e., task offloading control ( ToC ) and server grouping ( SeG ). Then, we devise an online control scheme, named MOTO (i.e., M obility-aware O nline T ask O ffloading), which consists of two components, i.e., Long Short Term Memory based algorithm and Dueling Double DQN based algorithm, to efficiently solve the ToC and SeG sub-problems, respectively. Extensive trace-driven experiments are carried out and the results demonstrate the effectiveness of MOTO in reducing computational costs of mobile devices and achieving load balancing when compared to the state-of-the-art benchmarks.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.compared to the best known related works.
|confname=TMC 2022
|confname =TMC'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9942345
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=MOTO: Mobility-Aware Online Task Offloading with Adaptive Load Balancing in Small-Cell MEC
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Xianyang}}
|speaker=Mengyu
{{Latest_seminar
|date=2025-12-05
|abstract = Edge computing capabilities in 5G wireless networks promise to benefit mobile users: computing tasks can be offloaded from user devices to nearby edge servers, reducing users’ experienced latencies. Few works have addressed how this offloading should handle long-term user mobility: as devices move, they will need to offload to different edge servers, which may require migrating data or state information from one edge server to another. In this paper, we introduce MoDEMS, a system model and architecture that provides a rigorous theoretical framework and studies the challenges of such migrations to minimize the service provider cost and user latency. We show that this cost minimization problem can be expressed as an integer linear programming problem, which is hard to solve due to resource constraints at the servers and unknown user mobility patterns. We show that finding the optimal migration plan is in general NP-hard, and we propose alternative heuristic solution algorithms that perform well in both theory and practice. We finally validate our results with real user mobility traces, ns-3 simulations, and an LTE testbed experiment. Migrations reduce the latency experienced by users of edge applications by 33% compared to previously proposed migration approaches.
}}
|confname=INFOCOM 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796680
|title=MoDEMS: Optimizing Edge Computing Migrations For User Mobility
|speaker=Zhenguo}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}