Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(124 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Obtaining urban-scale vehicle trajectories is essential to understand the urban mobility and benefits various downstream applications. The mobility knowledge obtained from existing vehicle trajectory sensing techniques is typically incomplete. To fill the gap, we propose F3VeTrac , an efficient deep-learning-based vehicle trajectory recovery system that utilizes complementary characteristics of the Camera Surveillance System and the Vehicle Tracking System to obtain fine-grained, fully-road-covered, and fully-individual-penetrative ( F3 ) trajectories. F3VeTrac utilizes five well-designed modules to model the co-occurrence relationships hidden in both coarse-grained and fine-grained trajectories from the two complementary sensing systems and fuse them to recover the coarse-grained trajectories. We implement and evaluate F3VeTrac with two real-world datasets from over 100 million regular vehicle trajectories and 16 million commercial vehicle trajectories in two cities of China, together with an on-field case study based on 251 regular vehicle trajectories collected by 17 volunteers, demonstrating its great advantages over six state-of-the-art alternative schemes. Source codes are available in https://github.com/UrbanComp-BUPT/F3VeTrac . Moreover, we present a downstream application of F3VeTrac for traffic condition estimation, which obtains obvious performance gains.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=TMC '23
|confname =ACL'24
|link=https://ieeexplore.ieee.org/abstract/document/10209220
|link = https://arxiv.org/abs/2406.16441
|title=F3VeTrac: Enabling Fine-grained, Fully-road-covered, and Fully-individual penetrative Vehicle Trajectory Recovery
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Zhenguo
|speaker=Bairong Liu
|date=2023-11-30}}
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract=In cloud gaming, interactive latency is one of the most important factors in users' experience. Although the interactive latency can be reduced through typical network infrastructures like edge caching and congestion control, the interactive latency of current cloud-gaming platforms is still far from users' satisfaction. This paper presents ZGaming, a novel 3D cloud gaming system based on image prediction, in order to eliminate the interactive latency in traditional cloud gaming systems. To improve the quality of the predicted images, we propose (1) a quality-driven 3D-block cache to reduce the "hole" artifacts, (2) a server-assisted LSTM-predicting algorithm to improve the prediction accuracy of dynamic foreground objects, and (3) a prediction-performance-driven adaptive bitrate strategy which optimizes the quality of predicted images. The experiment on the real-world cloud gaming network conditions shows that compared with existing methods, ZGaming reduces the interactive latency from 23 ms to 0 ms when providing the same video quality, or improves the video quality by 5.4 dB when keeping the interactive latency as 0 ms.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=SIGCOMM '23
|confname =TMC'25
|link=https://dl.acm.org/doi/pdf/10.1145/3603269.3604819
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=ZGaming: Zero-Latency 3D Cloud Gaming by Image Prediction
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Wenjie
|speaker=Mengyu
|date=2023-11-30}}
|date=2025-12-05
{{Latest_seminar
}}
|abstract=Given the central role mobile core plays in supporting mobile network operations, the efficiency, cost-effective dynamic scalability and resilience of the core control plane are paramount. Achieving these goals, however, presents two main challenges: (i) decoupling core network state from processing; (ii) decoupling control plane processing in the core from its interface to the radio access network (RAN). To overcome them, we present CoreKube, a novel message focused and cloud-native mobile core system design, which features truly stateless workers (processing units) that interface with a common database (to hold the core network state) and with the RAN through a frontend. The fully stateless and generic nature of the workers to process any control plane message enables efficient message handling. Orchestration of containerized CoreKube components using Kubernetes, allows leveraging the latter's autoscaling and self-healing properties. We develop 4G and 5G standard-compliant CoreKube implementations, exploiting the agile development methodology enabled by CoreKube's message focused design. Results from our extensive experimental evaluations over the Powder platform relative to prior art show that CoreKube efficiently processes control plane messages, scales dynamically while using minimal compute resources and recovers seamlessly from failures.
|confname=MobiCom '23
|link=https://dl.acm.org/doi/abs/10.1145/3570361.3592522
|title=CoreKube: An Efficient, Autoscaling and Resilient Mobile Core System
|speaker=Qinyong
|date=2023-11-30}}
{{Latest_seminar
|abstract=Maximum target coverage by adjusting the orientation of distributed sensors is an important problem in directional sensor networks (DSNs). This problem is challenging as the targets usually move randomly but the coverage range of sensors is limited in angle and distance. Thus, it is required to coordinate sensors to get ideal target coverage with low power consumption, e.g. no missing targets or reducing redundant coverage. To realize this, we propose a Hierarchical Target-oriented Multi-Agent Coordination (HiT-MAC), which decomposes the target coverage problem into two-level tasks: targets assignment by a coordinator and tracking assigned targets by executors. Specifically, the coordinator periodically monitors the environment globally and allocates targets to each executor. In turn, the executor only needs to track its assigned targets. To effectively learn the HiT-MAC by reinforcement learning, we further introduce a bunch of practical methods, including a self-attention module, marginal contribution approximation for the coordinator, goal-conditional observation filter for the executor, etc. Empirical results demonstrate the advantage of HiT-MAC in coverage rate, learning efficiency, and scalability, comparing to baselines. We also conduct an ablative analysis on the effectiveness of the introduced components in the framework.
|confname=NeurIPS '20
|link=https://proceedings.neurips.cc/paper/2020/hash/7250eb93b3c18cc9daa29cf58af7a004-Abstract.html
|title=Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks
|speaker=Jiahui
|date=2023-11-30}}
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}