Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(60 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-11-8 10:30-12:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we revisit the problem of the current routing system in terms of prediction scalability and routing result optimality. Specifically, the current traffic prediction models are not suitable for large urban networks due to the incomplete information of traffic conditions. Besides, existing routing systems can only plan the routes based on the past traffic conditions and struggle to update the optimal route for vehicles in real-time. As a result, the actual route taken by vehicles is different from the ground-truth optimal path. Therefore, we propose a Just-In-Time Predictive Route Planning framework to tackle these two problems. Firstly, we propose a Travel Time Constrained Top- kn Shortest Path algorithm which pre-computes a set of candidate paths with several switch points. This empowers vehicles to continuously have the opportunity to switch to better paths taking into account real-time traffic condition changes. Moreover, we present a query-driven prediction paradigm with ellipse-based searching space estimation, along with an efficient multi-queries handling mechanism. This not only allows for targeted traffic prediction by prioritizing regions with valuable yet outdated traffic information, but also provides optimal results for multiple queries based on real-time traffic evolution. Evaluations on two real-life road networks demonstrate the effectiveness and efficiency of our framework and methods.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname =ICDE‘24
|confname =ACL'24
|link = https://ieeexplore.ieee.org/document/10598147/authors#authors
|link = https://arxiv.org/abs/2406.16441
|title= A Just-In-Time Framework for Continuous Routing
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Zhenguo
|speaker=Bairong Liu
|date=2024-11-8
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Many networking tasks now employ deep learning (DL) to solve complex prediction and optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the powerful pre-trained knowledge, the LLM is promising to serve as the foundation model to achieve "one model for all tasks" with even better performance and stronger generalization. In pursuit of this vision, we present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems. Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers. Besides, NetLLM drastically reduces the costs of fine-tuning the LLM to acquire domain knowledge for networking. Across three networking-related use cases - viewport prediction, adaptive bitrate streaming and cluster job scheduling, we showcase that the NetLLM-adapted LLM significantly outperforms state-of-the-art algorithms.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname =NSDI‘24
|confname =TMC'25
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672268
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title= NetLLM: Adapting Large Language Models for Networking
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Yinghao
|speaker=Mengyu
|date=2024-11-8
|date=2025-12-05
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}