Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(282 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-05 8:40
|time='''2025-12-12 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract=Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device, thus preserving privacy and eliminating the need to store data globally. While there are promising results under the assumption of independent and identically distributed (iid) local data, current state-of-the-art algorithms suffer a performance degradation as the heterogeneity of local data across clients increases. To resolve this issue, we propose a simple framework, \emph{Mean Augmented Federated Learning (MAFL)}, where clients send and receive \emph{averaged} local data, subject to the privacy requirements of target applications. Under our framework, we propose a new augmentation algorithm, named \emph{FedMix}, which is inspired by a phenomenal yet simple data augmentation method, Mixup, but does not require local raw data to be directly shared among devices. Our method shows greatly improved performance in the standard benchmark datasets of FL, under highly non-iid federated settings, compared to conventional algorithms.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=ICLR 2021
|confname =EMNLP'25
|link=https://openreview.net/pdf?id=Ogga20D2HO-
|link = https://arxiv.org/abs/2501.18460
|title=FedMix: Approximation of Mixup under Mean Augmented Federated Learning
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Jianqi
|speaker=Youwei Ran
|date=2025-12-12
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract=Function-as-a-Service (FaaS) is becoming a prevalent paradigm in developing cloud applications. With FaaS, clients can develop applications as serverless functions, leaving the burden of resource management to cloud providers. However, FaaS platforms suffer from the performance degradation caused by the cold starts of serverless functions. Cold starts happen when serverless functions are invoked before they have been loaded into the memory. The problem is unavoidable because the memory in datacenters is typically too limited to hold all serverless functions simultaneously. The latency of cold function invocations will greatly degenerate the performance of FaaS platforms. Currently, FaaS platforms employ various scheduling methods to reduce the occurrences of cold starts. However, they do not consider the ubiquitous dependencies between serverless functions. Observing the potential of using dependencies to mitigate cold starts, we propose Defuse, a Dependency-guided Function Scheduler on FaaS platforms. Specifically, Defuse identifies two types of dependencies between serverless functions, i.e., strong dependencies and weak ones. It uses frequent pattern mining and positive point-wise mutual information to mine such dependencies respectively from function invocation histories. In this way, Defuse constructs a function dependency graph. The connected components (i.e., dependent functions) on the graph can be scheduled to diminish the occurrences of cold starts. We evaluate the effectiveness of Defuse by applying it to an industrial serverless dataset. The experimental results show that Defuse can reduce 22% of memory usage while having a 35% decrease in function cold-start rates compared with the state-of-the-art method.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=ICDCS 2021
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9546470
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on FaaS Platforms
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Linyuanqi
|speaker=Yi Zhou
|date=2025-12-12
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}