Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(270 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-26 8:40
|time='''2025-12-12 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Underwater wireless sensor networks (UWSNs) have emerged as an enabling technology for aquatic monitoring. However, data delivery in UWSNs is challenging, due to the harsh aquatic environment and characteristics of the underwater acoustic channel. In recent years, underwater nodes with multi-modal communication capabilities have been proposed to create communication diversity and improve data delivery in UWSNs. Nevertheless, less attention has been devoted to the design of networking protocols leveraging multi-modal communication capabilities of underwater nodes. In this paper, we propose a novel stochastic model for the study of opportunistic routing (OR) in multi-modal UWSNs. We also design two candidate set selection heuristics, named OMUS-E and OMUS-D, for the joint selection of the most suitable acoustic modem for data transmission and next-hop forwarder candidate nodes at each hop, aimed to reduce the energy consumption and improve the network data delivery ratio in multi-modal UWSNs, respectively. Numerical results showed that both proposed heuristics reduced the energy consumption by 65%, 70%, and 75% as compared to the DBR, HydroCast, and GEDAR classical related work protocols, while maintaining a similar data delivery ratio. Furthermore, the proposed solutions outperformed the CAPTAIN routing protocol in terms of data delivery ratio, while maintaining comparable energy consumption.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname= TWC 2021
|confname =EMNLP'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=939476
|link = https://arxiv.org/abs/2501.18460
|title=OMUS: Efficient Opportunistic Routing in Multi-Modal Underwater Sensor Networks
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Xianyang
|speaker=Youwei Ran
|date=2025-12-12
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = LoRa, as a representative Low-Power Wide-Area Network (LPWAN) technology, can provide long-range communication for battery-powered IoT devices with a 10-year lifetime. LoRa links in practice, however, experience high dynamics in various environments. When the SNR falls below the threshold (e.g., in the building), a LoRa device disconnects from the network. We propose Falcon, which addresses the link dynamics by enabling data transmission for very low SNR or even disconnected LoRa links. At the heart of Falcon, we reveal that low SNR LoRa links that cannot deliver packets can still introduce interference to other LoRa transmissions. Therefore, Falcon transmits data bits on the low SNR link by selectively interfering with other LoRa transmissions. We address practical challenges in Falcon design. We propose a low-power channel activity detection method to detect other LoRa transmissions for selective interference. To interfere with the so-called interference-resilient LoRa, we accurately estimate the time and frequency offsets on LoRa packets and propose an adaptive frequency adjusting strategy to maximize the interference. We implement Falcon, all using commercial off-the-shelf LoRa devices, and extensively evaluate its performance. The results show that Falcon can provide reliable communication links for disconnected LoRa devices and achieves the SNR boundary upto 7.5 dB lower than that of standard LoRa.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname= Mobicom 2021
|confname =CoRL'24
|link= https://dl.acm.org/doi/pdf/10.1145/3447993.3483250
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Combating link dynamics for reliable lora connection in urban settings
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Wangxiong
|speaker=Yi Zhou
|date=2025-12-12
}}
}}
{{Latest_seminar
|abstract = The revolution of online shopping in recent years demands corresponding evolution in delivery services in urban areas. To cater to this trend, delivery by the crowd has become an alternative to the traditional delivery services thanks to the advances in ubiquitous computing. Notably, some studies use public transportation for crowdsourcing delivery, given its low-cost delivery network with millions of passengers as potential couriers. However, multiple practical impact factors are not considered in existing public-transport-based crowdsourcing delivery studies due to a lack of data and limited ubiquitous computing infrastructures in the past. In this work, we design a crowdsourcing delivery system based on public transport, considering the practical factors of time constraints, multi-hop delivery, and profits. To incorporate the impact factors, we build a reinforcement learning model to learn the optimal order dispatching strategies from massive passenger data and package data. The order dispatching problem is formulated as a sequential decision making problem for the packages routing, i.e., select the next station for the package. A delivery time estimation module is designed to accelerate the training process and provide statistical delivery time guarantee. Three months of real-world public transportation data and one month of package delivery data from an on-demand delivery platform in Shenzhen are used in the evaluation. Compared with existing crowdsourcing delivery algorithms and widely used baselines, we achieve a 40% increase in profit rates and a 29% increase in delivery rates. Comparison with other reinforcement learning algorithms shows that we can improve the profit rate and the delivery rate by 9% and 8% by using time estimation in action filtering. We share the data used in the project to the community for other researchers to validate our results and conduct further research.1 [1].
|confname= IMWUT 2021
|link= https://dl.acm.org/doi/pdf/10.1145/3478117
|title=A City-Wide Crowdsourcing Delivery System with Reinforcement Learning
|speaker=Wenjie
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}