Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(250 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-3-18 10:20'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing facilitates users to offload computation tasks to edge servers for meeting their stringent delay requirements. Previous works mainly explore task offloading when system-side information is given (e.g., server processing speed, cellular data rate), or centralized offloading under system uncertainty. But both generally fall short to handle task placement involving many coexisting users in a dynamic and uncertain environment. In this paper, we develop a multi-user offloading framework considering unknown yet stochastic system side information to enable a decentralized user-initiated service placement. Specifically, we formulate the dynamic task placement as an online multi-user multi-armed bandit process, and propose a decentralized epoch based offloading (DEBO) to optimize user rewards which are subjected under network delay. We show that DEBO can deduce the optimal user-server assignment, thereby achieving a close-to-optimal service performance and tight O(log T) offloading regret. Moreover, we generalize DEBO to various common scenarios such as unknown reward gap, dynamic entering or leaving of clients, and fair reward distribution, while further exploring when users’ offloaded tasks require heterogeneous computing resources. Particularly, we accomplish a sub-linear regret for each of these instances. Real measurements based evaluations corroborate the superiority of our offloading schemes over state-of-the-art approaches in optimizing delay-sensitive rewards.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname= INFOCOM 2022
|confname =EMNLP'25
|link=https://arxiv.org/pdf/2112.11818v1.pdf
|link = https://arxiv.org/abs/2501.18460
|title=Decentralized Task Offloading in Edge Computing: A Multi-User Multi-Armed Bandit Approach
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Wenjie
|speaker=Youwei Ran
|date=2025-12-12
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Accurate, real-time object detection on resource-constrained devices enables autonomous mobile vision applications such as traffic surveillance, situational awareness, and safety inspection, where it is crucial to detect both small and large objects in crowded scenes. Prior studies either perform object detection locally on-board or offload the task to the edge/cloud. Local object detection yields low accuracy on small objects since it operates on low-resolution videos to fit in mobile memory. Offloaded object detection incurs high latency due to uploading high-resolution videos to the edge/cloud. Rather than either pure local processing or offloading, we propose to detect large objects locally while offloading small object detection to the edge. The key challenge is to reduce the latency of small object detection. Accordingly, we develop EdgeDuet, the first edge-device collaborative framework for enhancing small object detection with tile-level parallelism. It optimizes the offloaded detection pipeline in tiles rather than the entire frame for high accuracy and low latency. Evaluations on drone vision datasets under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet outperforms local object detection in small object detection accuracy by 233.0%. It also improves the detection accuracy by 44.7% and latency by 34.2% over the state-of-the-art offloading schemes.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname= INFOCOM 2021
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488843
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Xianyang
|speaker=Yi Zhou
|date=2025-12-12
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}