Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(182 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-10-25 16:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Barcodes and NFC have become the de facto standards in the field of automatic identification and data capture. These standards have been widely adopted for many applications, such as mobile payments, advertisements, social sharing, admission control, and so on. Recently, considerable demands require the integration of these two codes (barcode and NFC code) into a single tag for the functional complementation. To achieve the goal of "one tag, two codes" (OTTC), this work proposes CoilCode, which takes advantage of the printed electronics to fuse an NFC coil antenna into a QR code on a single layer. The proposed code could be identified by cameras and NFC readers. With the use of the conductive inks, QR code and NFC code have become an essential part of each other: the modules of the QR code facilitate the NFC chip in harvesting energy from the magnetic field, while the NFC antenna itself represents bits of the QR code. Compared to the prior dual-layer OTTC, CoilCode is more compact, cost-effective, flimsy, flexible, and environment-friendly, and also reduces the fabrication complexity considerably. We prototyped hundreds of CoilCodes and conducted comprehensive evaluations (across 4 models of NFC chips and 8 kinds of NFC readers under 13 different system configurations). CoilCode demonstrates high-quality identification results for QR code and NFC functions on a wide range of inputs and under different distortion effects.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=MobiCom 2021
|confname =EMNLP'25
|link=https://dl.acm.org/doi/pdf/10.1145/3447993.3448631
|link = https://arxiv.org/abs/2501.18460
|title=One Tag, Two Codes: Identifying Optical Barcodes with NFC
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Jiangshu}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Recently, increasing investments in satellite-related technologies make the low earth orbit (LEO) satellite constellation a strong complement to terrestrial networks. To mitigate the limitations of the traditional satellite constellation “bent-pipe” architecture, satellite edge computing (SEC) has been proposed by placing computing resources at the LEO satellite constellation. Most existing works focus on space-air-ground integrated network architecture and SEC computing framework. Beyond these works, we are the first to investigate how to efficiently deploy services on the SEC nodes to realize robustness aware service coverage with constrained resources. Facing the challenges of spatial-temporal system dynamics and service coverage-robustness conflict, we propose a novel online service placement algorithm with a theoretical performance guarantee by leveraging Lyapunov optimization and Gibbs sampling. Extensive simulation results show that our algorithm can improve the service coverage by 4.3× compared with the baseline.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=IoTJ 2022
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9444334
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Service Coverage for Satellite Edge Computing
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Qinyong}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = Vehicular edge computing (VEC) is a promising paradigm based on the Internet of vehicles to provide computing resources for end users and relieve heavy traffic burden for cellular networks. In this paper, we consider a VEC network with dynamic topologies, unstable connections and unpredictable movements. Vehicles inside can offload computation tasks to available neighboring VEC clusters formed by onboard resources, with the purpose of both minimizing system energy consumption and satisfying task latency constraints. For online task scheduling, existing researches either design heuristic algorithms or leverage machine learning, e.g., deep reinforcement learning (DRL). However, these algorithms are not efficient enough because of their low searching efficiency and slow convergence speeds for large-scale networks. Instead, we propose an imitation learning enabled online task scheduling algorithm with near-optimal performance from the initial stage. Specially, an expert can obtain the optimal scheduling policy by solving the formulated optimization problem with a few samples offline. For online learning, we train agent policies by following the expert’s demonstration with an acceptable performance gap in theory. Performance results show that our solution has a significant advantage with more than 50 percent improvement compared with the benchmark.
}}
|confname=TMC 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9151371
|title=Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing
|speaker=Zhenguo}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}