Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(177 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-11-08 16:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Low Power Wide Area Networks (LPWAN) have become one of the key techniques to provide long-range, low-power communication for large-scale devices in the Internet of Things. However, LPWAN devices in real deployments (e.g.,in buildings and basements) suffer from low-quality links due to signal attenuation, leading to coverage holes and significant deployment overhead. In this work, we propose Ostinato to enable communication for weak links and to enhance the coverage for real deployments of COTS LoRa. The key idea of Ostinato is to transform the original packet to a pseudo packet with repeated symbols and to concentrate the energy of multiple symbols to enhance the signal SNR. To address practical challenges, we reverse engineer the entire coding and modulation process of LoRa and propose a method to generate repeated symbols on COTS LoRa by manipulating input data bits. Thus, Ostinato can be directly used for widely deployed LoRa nodes without hardware modification. We achieve weak packet detection, synchronization, and effective decoding on the receiver side by concentrating energy from multiple symbols with phase offsets. We implement Ostinato on Software Defined Radio (SDR) platform and extensively evaluate its performance. The evaluation results show that Ostinato achieves an 8.5 dB gain on receiving sensitivity and 2.88× gain on the coverage compared with COTS LoRa.  
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=ICNP2022
|confname =EMNLP'25
|link=https://www.jianguoyun.com/p/DUT5aHYQ_LXjBxiBx-UEIAA
|link = https://arxiv.org/abs/2501.18460
|title=Ostinato: Combating LoRa Weak Links in Real Deployments
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Wenliang}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile crowd sensing (MCS) is a promising paradigm which leverages sensor-embedded mobile devices to collect and share data. The key challenging issues in designing an MCS system include selecting appropriate users to participate in a specific sensing task and designing efficient data sensing and transmission policies for data aggregation. In mobile edge networks, the limitation on network resources including bandwidth and energy affects the design of MCS significantly. Specifically, the limited resources affect whether and how to select users for a sensing task, and the bandwidth allocated to a user affects its data sensing and transmission policies. Since user selection, bandwidth allocation, data sensing and transmission are closely coupled issues in MCS, we focus on designing a unified framework for joint sensing and communication in this paper, by jointly optimizing the aforementioned four policies under resource constraints. Simulation results show that the proposed unified framework significantly outperforms several baseline solutions without considering wireless link vulnerability and/or resource limitations.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=TMC2022
|confname =CoRL'24
|link=https://eprints.gla.ac.uk/274277/1/274277.pdf
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=A Unified Framework for Joint Sensing and Communication in Resource Constrained Mobile Edge Networks
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Xianyang}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = Federated learning (FL) has attracted growing attentions via data-private collaborative training on decentralized clients. However, most existing methods unrealistically assume object classes of the overall framework are fixed over time. It makes the global model suffer from significant catastrophic forgetting on old classes in real-world scenarios, where local clients often collect new classes continuously and have very limited storage memory to store old classes. Moreover, new clients with unseen new classes may participate in the FL training, further aggravating the catastrophic forgetting of global model. To address these challenges, we develop a novel Global-Local Forgetting Compensation (GLFC) model, to learn a global class-incremental model for alleviating the catastrophic forgetting from both local and global perspectives. Specifically, to address local forgetting caused by class imbalance at the local clients, we design a class-aware gradient compensation loss and a class-semantic relation distillation loss to balance the forgetting of old classes and distill consistent inter-class relations across tasks. To tackle the global forgetting brought by the non-i.i.d class imbalance across clients, we propose a proxy server that selects the best old global model to assist the local relation distillation. Moreover, a prototype gradient-based communication mechanism is developed to protect the privacy. Our model outperforms state-of-the-art methods by 4.4% 15.1% in terms of average accuracy on representative benchmark datasets. The code is available at https://github.com/conditionWang/FCIL.
}}
|confname=CVPR 2022
|link=https://openaccess.thecvf.com/content/CVPR2022/papers/Dong_Federated_Class-Incremental_Learning_CVPR_2022_paper.pdf
|title=Federated Class-Incremental Learning
|speaker=Jianqi}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}