Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(175 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-06 9:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Many opportunistic routing (OR) schemes treat network nodes equally, neglecting the fact that the nodes close to the sink undertake more duties than the rest of the network nodes. Therefore, the nodes located at different positions should play different roles during the routing process. Moreover, considering various Quality-of-Service (QoS) requirements, the routing decision in OR is affected by multiple network attributes. The majority of these OR schemes fail to contemplate multiple network attributes while making routing decisions. To address the aforesaid issues, this paper presents a novel protocol that runs in three steps. First, each node defines a Routing Zone (RZ) to route packets toward the sink. Second, the nodes within RZ are prioritized based on the competency value obtained through a novel model that employs Modified Analytic Hierarchy Process (MAHP) and Fuzzy Logic techniques. Finally, one of the forwarders is selected as the final relay node after forwarders coordination. Through extensive experimental simulations, it is confirmed that FLORA achieves better performance compared to its counterparts in terms of energy consumption, overhead packets, waiting times, packet delivery ratio, and network lifetime.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=TMC2022
|confname =EMNLP'25
|link=https://ieeexplore.ieee.org/document/9410408/
|link = https://arxiv.org/abs/2501.18460
|title=FLORA: Fuzzy Based Load-Balanced Opportunistic Routing for Asynchronous Duty-Cycled WSNs
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Luwei}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = With the wide adoption of AI applications, there is a pressing need of enabling real-time neural network (NN) inference on small embedded devices, but deploying NNs and achieving high performance of NN inference on these small devices is challenging due to their extremely weak capabilities. Although NN partitioning and offloading can contribute to such deployment, they are incapable of minimizing the local costs at embedded devices. Instead, we suggest to address this challenge via agile NN offloading, which migrates the required computations in NN offloading from online inference to offline learning. In this paper, we present AgileNN, a new NN offloading technique that achieves real-time NN inference on weak embedded devices by leveraging eXplainable AI techniques, so as to explicitly enforce feature sparsity during the training phase and minimize the online computation and communication costs. Experiment results show that AgileNN's inference latency is >6X lower than the existing schemes, ensuring that sensory data on embedded devices can be timely consumed. It also reduces the local device's resource consumption by >8X, without impairing the inference accuracy.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=MobiCom 2022
|confname =CoRL'24
|link=https://dl.acm.org/doi/abs/10.1145/3495243.3560551
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Crong}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = Interoperability among a vast number of heterogeneous IoT nodes is a key issue. However, the communication among IoT nodes does not fully interoperate to date. The underlying reason is the lack of a lightweight and unified network architecture for IoT nodes having different radio technologies. In this paper, we design and implement TinyNet, a lightweight, modular, and unified network architecture for representative low-power radio technologies including 802.15.4, BLE, and LoRa. The modular architecture of TinyNet allows us to simplify the creation of new protocols by selecting specific modules in TinyNet. We implement TinyNet on realistic IoT nodes including TI CC2650 and Heltec IoT LoRa nodes. We perform extensive evaluations. Results show that TinyNet (1) allows interoperability at or above the network layer; (2) allows code reuse for multi-protocol co-existence and simplifies new protocols design by module composition; (3) has a small code size and memory footprint.
}}
|confname=MobiSys 2022
|link=https://dl.acm.org/doi/abs/10.1145/3498361.3538919
|title=TinyNET: a lightweight, modular, and unified network architecture for the internet of things
|speaker=Xinyu}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}