Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminar)
 
(159 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-27 9:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=In vehicular ad hoc networks (VANETs), quick and reliable multi-hop broadcasting is important for the dissemination of emergency warning messages. By scheduling multiple nodes to transmit messages concurrently and cooperatively, cooperative transmission based broadcast schemes may yield much better broadcast performance than conventional broadcast schemes. However, a cooperative transmission requires multiple relays to achieve strict synchronization on both time and frequency, which may induce high cost for a cooperative transmission process. In this paper, we analyze the cost and benefit of a cooperative transmission for data broadcasting in vehicular networks, and introduce a new metric called the single-hop broadcast efficiency (SBE) to evaluate the overall broadcast performance. We propose an efficient, non-deterministic cooperation mechanism to reduce the cooperation cost. The mechanism maximizes the expected broadcast performance by selecting cooperators with the largest expected SBE value for a lead relay, and initiates cooperative broadcasting process when the expected SBE value is larger than that of a single-relay based broadcasting. Based on the non-deterministic mechanism, we propose an efficient, cooperative transmission based opportunistic broadcast (ECTOB) scheme which further utilizes rebroadcast to improve the reliability of the broadcast scheme. Simulation results show that the proposed scheme outperforms the conventional ones.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=TMC 2023
|confname =EMNLP'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9519523
|link = https://arxiv.org/abs/2501.18460
|title=An Efficient Cooperative Transmission Based Opportunistic Broadcast Scheme in VANETs
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Luwei}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint. Data heterogeneity is one of the main challenges in FL, which results in slow convergence and degraded performance. Most existing approaches only tackle the heterogeneity challenge by restricting the local model update in client, ignoring the performance drop caused by direct global model aggregation. Instead, we propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG), which relieves the issue of direct model aggregation. Concretely, FedFTG explores the input space of local models through a generator, and uses it to transfer the knowledge from local models to the global model. Besides, we propose a hard sample mining scheme to achieve effective knowledge distillation throughout the training. In addition, we develop customized label sampling and class-level ensemble to derive maximum utilization of knowledge, which implicitly mitigates the distribution discrepancy across clients. Extensive experiments show that our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=CVPR 2022
|confname =CoRL'24
|link=https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Fine-Tuning_Global_Model_via_Data-Free_Knowledge_Distillation_for_Non-IID_Federated_CVPR_2022_paper.pdf4
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Fine-Tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Jiaqi}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = Visible light communication (VLC) systems relying on commercial-off-the-shelf (COTS) devices have gathered momentum recently, due to the pervasive adoption of LED lighting and mobile devices. However, the achievable throughput by such practical systems is still several orders below those claimed by controlled experiments with specialized devices. In this paper, we engineer CoLight aiming to boost the data rate of the VLC system purely built upon COTS devices. CoLight adopts COTS LEDs as its transmitter, but it innovates in its simple yet delicate driver circuit wiring an array of LED chips in a combinatorial manner. Consequently, modulated signals can directly drive the on-off procedures of individual chip groups, so that the spatially synthesized light emissions exhibit a varying luminance following exactly the modulation symbols. To obtain a readily usable receiver, CoLight interfaces a COTS PD with a smartphone through the audio jack, and it also has an alternative MCU-driven circuit to emulate a future integration into the phone. The evaluations on CoLight are both promising and informative: they demonstrate a throughput up to 80 kbps at a distance of 2 m, while suggesting various potentials to further enhance the performance.judiciously allocating 15.81 -- 37.67% idle resources on frames that tend to yield greater marginal benefits from enhancement.
}}
|confname=TMC 2021
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8978742
|title=Pushing the Data Rate of Practical VLC via Combinatorial Light Emission
|speaker=Mengyu}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}