Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(131 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Versatile Internet of Things (IoT) applications call for re-configurable IoT devices that can easily extend new functionality on demand. However, the heterogeneity of functional chips brings difficulties in device customization, leading to inadequate flexibility. In this paper, we propose LEGO, a novel architecture for chip-level re-configurable IoT devices that supports plug-and-play with Commercial Off-The-Shelf (COTS) chips. To combat the heterogeneity of functional chips, we first design a novel Unified Chip Description Language (UCDL) with meta-operation and chip specifications to access various types of functional chips uniformly. Then, to achieve chips plug-and-play, we build up a novel platform and shift all chip control logic to the gateway, which makes IoT devices entirely decoupled from specific applications and does not need to make any changes when plugging in new functional chips. Finally, to handle communications overheads, we built up a novel orchestration architecture for gateway instructions, which minimizes instruction transmission frequency in remote chip control. We implement the prototype and conduct extensive evaluations with 100+ types of COTS functional chips. The results show that new functional chips can be automatically accessed by the system within 0.13 seconds after being plugged in, and only bringing 0.53 kb of communication load on average, demonstrating the efficacy of LEGO design.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=ASPLOS '23
|confname =EMNLP'25
|link=https://dl.acm.org/doi/10.1145/3582016.3582050
|link = https://arxiv.org/abs/2501.18460
|title=LEGO: Empowering Chip-Level Functionality Plug-and-Play for Next-Generation IoT Devices
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Pengfei
|speaker=Youwei Ran
|date=2023-11-09}}
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract=In VANETs, it is important to support fast and reliable multi-hop broadcast for safety-related applications. The performance of multi-hop broadcast schemes is greatly affected by relay selection strategies. However, the relationship between the relay selection strategies and the expected broadcast performance has not been fully characterized yet. Furthermore, conventional broadcast schemes usually attempt to minimize the waiting time difference between adjacent relay candidates to reduce the waiting time overhead, which makes the relay selection process vulnerable to internal interference, occurring due to retransmissions from previous forwarders and transmissions from redundant relays. In this paper, we jointly take both of the relay selection and the internal interference mitigation into account and propose a fast, reliable, opportunistic multi-hop broadcast scheme, in which we utilize a novel metric called the expected broadcast speed in relay selection and propose a delayed retransmission mechanism to mitigate the adverse effect of retransmissions from previous forwarders and an expected redundancy probability based mechanism to mitigate the adverse effect of redundant relays. The performance evaluation results show that the proposed scheme yields the best broadcast performance among the four schemes in terms of the broadcast coverage ratio and the end-to-end delivery latency.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=TMC '23
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/document/9566795
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=A Fast, Reliable, Opportunistic Broadcast Scheme With Mitigation of Internal Interference in VANETs
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Luwei
|speaker=Yi Zhou
|date=2023-11-09}}
|date=2025-12-12
{{Latest_seminar
}}
|abstract=With the explosive increment of computation requirements, the multiaccess edge computing (MEC) paradigm appears as an effective mechanism. Besides, as for the Internet of Things (IoT) in disasters or remote areas requiring MEC services, unmanned aerial vehicles (UAVs) and high altitude platforms (HAPs) are available to provide aerial computing services for these IoT devices. In this article, we develop the hierarchical aerial computing framework composed of HAPs and UAVs, to provide MEC services for various IoT applications. In particular, the problem is formulated to maximize the total IoT data computed by the aerial MEC platforms, restricted by the delay requirement of IoT and multiple resource constraints of UAVs and HAPs, which is an integer programming problem and intractable to solve. Due to the prohibitive complexity of the exhaustive search, we handle the problem by presenting the matching game theory-based algorithm to deal with the offloading decisions from IoT devices to UAVs, as well as a heuristic algorithm for the offloading decisions between UAVs and HAPs. The external effect affected by the interplay of different IoT devices in the matching is tackled by the externality elimination mechanism. Besides, an adjustment algorithm is also proposed to make the best of aerial resources. The complexity of proposed algorithms is analyzed and extensive simulation results verify the efficiency of the proposed algorithms, and the system performances are also analyzed by the numerical results.
|confname=IoTJ '23
|link=https://ieeexplore.ieee.org/document/9714482?denied=
|title=Hierarchical Aerial Computing for Internet of Things via Cooperation of HAPs and UAVs
|speaker=Kun Wang
|date=2023-11-09}}
{{Latest_seminar
|abstract=Serverless applications are typically composed of function workflows in which multiple short-lived functions are triggered to exchange data in response to events or state changes. Current serverless platforms coordinate and trigger functions by following high-level invocation dependencies but are oblivious to the underlying data exchanges between functions. This design is neither efficient nor easy to use in orchestrating complex workflows – developers often have to manage complex function interactions by themselves, with customized implementation and unsatisfactory performance. In this paper, we argue that function orchestration should follow a data-centric approach. In our design, the platform provides a data bucket abstraction to hold the intermediate data generated by functions. Developers can use a rich set of data trigger primitives to control when and how the output of each function should be passed to the next functions in a workflow. By making data consumption explicit and allowing it to trigger functions and drive the workflow, complex function interactions can be easily and efficiently supported. We present Pheromone – a scalable, low-latency serverless platform following this data-centric design. Compared to well-established commercial and open-source platforms, Pheromone cuts the latencies of function interactions and data exchanges by orders of magnitude, scales to large workflows, and enables easy implementation of complex applications.
|confname=NSDI '23
|link=https://www.usenix.org/conference/nsdi23/presentation/yu
|title=Following the Data, Not the Function: Rethinking Function Orchestration in Serverless Computing
|speaker=Mengfan
|date=2023-11-09}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}