Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(124 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 9:00-10:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Low-density parity-check (LDPC) codes have been widely used for Forward Error Correction (FEC) in wireless networks because they can approach the capacity of wireless links with lightweight encoding complexity. Although LoRa networks have been developed for many applications, they still adopt simple FEC codes, i.e., Hamming codes, which provide limited FEC capacity, causing unreliable data transmissions and high energy consumption of LoRa nodes. To close this gap, this paper develops LLDPC, which realizes LDPC coding in LoRa networks. Three challenges are addressed. 1) LoRa employs Chirp Spread Spectrum (CSS) modulation, which only provides hard demodulation results without soft information. However, LDPC requires the Log-Likelihood Ratio (LLR) of each received bit for decoding. We develop an LLR extractor for LoRa CSS. 2) Some erroneous bits may have high LLRs (i.e., wrongly confident in their correctness), significantly affecting the LDPC decoding efficiency. We use symbol-level information to fine-tune the LLRs of some bits to improve the LDPC decoding efficiency. 3) Soft Belief Propagation (SBP) is typically used as the LDPC decoding algorithm. It involves heavy iterative computation, resulting in a long decoding latency, which prevents the gateway from sending timely an acknowledgment. We take advantage of recent advances in graph neural networks for fast belief propagation in LDPC decoding. Extensive simulations on a large-scale synthetic dataset and in-filed experiments reveal that LLDPC can extend the lifetime of the default LoRa by 86.7% and reduce the decoding latency of the SBP algorithm by 58.09×.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=SenSys' 22
|confname =EMNLP'25
|link=https://dl.acm.org/doi/pdf/10.1145/3560905.3568547
|link = https://arxiv.org/abs/2501.18460
|title=LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Wengliang
|speaker=Youwei Ran
|date=2023-12-21}}
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract=Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance. The single update focuses on processing one update event at a time, i.e. , updating a set of flows from their initial routes to target routes, but it fails to handle continuously arriving update events in time incurred by high-frequency network changes. On the contrary, the continuous update proposed in “Update Algebra” can handle multiple update events concurrently and respond to the network condition changes at all times. However, “Update Algebra” only guarantees the blackhole-free and loop-free update. The congestion-free property cannot be respected. In this paper, we propose Coeus to achieve the continuous update while maintaining consistency, i.e. , ensuring the blackhole-free, loop-free, and congestion-free properties simultaneously. Firstly, we establish the continuous update model based on the update operations in update events. With the update model, we dynamically reconstruct the operation dependency graph (ODG) to capture the relationship between update operations and link utilization variations. Then, we develop a composition algorithm to eliminate redundant operations in update events. To further speed up the update procedure, we present a partition algorithm to split the operation nodes of the ODG into a series of suboperation nodes that can be executed independently. The partition algorithm is proven to be optimal. Finally, extensive evaluations show that Coeus can improve the update speed by at least 179% and reduce redundant operations by at least 52% compared with state-of-the-art approaches when the arrival rate of update events equals three times per second.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=ToN' 22
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/document/9690589/
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Continuous Network Update With Consistency Guaranteed in Software-Defined Networks
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Yaliang
|speaker=Yi Zhou
|date=2023-12-21}}
|date=2025-12-12
{{Latest_seminar
}}
|abstract=With the reduced hardware costs of omnidirectional cameras and the proliferation of various extended reality applications, more and more 360° videos are being captured. To fully unleash their potential, advanced video analytics is expected to extract actionable insights and situational knowledge without blind spots from the videos. In this paper, we present OmniSense, a novel edge-assisted framework for online immersive video analytics. OmniSense achieves both low latency and high accuracy, combating the significant computation and network resource challenges of analyzing 360° videos. Motivated by our measurement insights into 360° videos, OmniSense introduces a lightweight spherical region of interest (SRoI) prediction algorithm to prune redundant information in 360° frames. Incorporating the video content and network dynamics, it then smartly scales vision models to analyze the predicted SRoIs with optimized resource utilization. We implement a prototype of OmniSense with commodity devices and evaluate it on diverse real-world collected 360° videos. Extensive evaluation results show that compared to resource-agnostic baselines, it improves the accuracy by 19.8% – 114.6% with similar end-to-end latencies. Meanwhile, it hits 2.0× – 2.4× speedups while keeping the accuracy on par with the highest accuracy of baselines.
|confname=INFOCOM '23
|link=https://ieeexplore.ieee.org/document/10229105
|title=OmniSense: Towards Edge-Assisted Online Analytics for 360-Degree Videos
|speaker=Mengfan
|date=2023-12-21}}
{{Latest_seminar
|abstract=Remote Direct Memory Access (RDMA) is widely used in high-performance computing (HPC) and data center networks. In this paper, we first show that RDMA does not work well with existing load balancing algorithms because of its traffic flow characteristics and assumption of in-order packet delivery. We then propose ConWeave, a load balancing framework designed for RDMA. The key idea of ConWeave is that with the right design, it is possible to perform fine granularity rerouting and mask the effect of out-of-order packet arrivals transparently in the network datapath using a programmable switch. We have implemented ConWeave on a Tofino2 switch. Evaluations show that ConWeave can achieve up to 42.3% and 66.8% improvement for average and 99-percentile FCT, respectively compared to the state-of-the-art load balancing algorithms.
|confname=SIGCOMM '23
|link=https://dl.acm.org/doi/abs/10.1145/3603269.3604849
|title=Network Load Balancing with In-network Reordering Support for RDMA
|speaker=Jiyi
|date=2023-12-21}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}