Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(116 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-03-22 10:30-12:00'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Satellite routers in emerging space-terrestrial integrated networks (STINs) are operated in a failure-prone, intermittent and resource-constrained space environment, making it very critical but challenging to cope with various network failures effectively. Existing resilient routing approaches either suffer from continuous re-convergences with low network reachability, or involve prohibitive pre-computation and storage overhead due to the huge amount of possible failure scenarios in STINs.This paper presents StarCure, a novel resilient routing mechanism for futuristic STINs. StarCure aims at achieving fast and efficient routing restoration, while maintaining the low-latency, high-bandwidth service capabilities in failure-prone space environments. First, StarCure incorporates a new network model, called the topology-stabilizing model (TSM) to eliminate topological uncertainty by converting the topology variations caused by various failures to traffic variations. Second, StarCure adopts an adaptive hybrid routing scheme, collaboratively combining a constraint optimizer to efficiently handle predictable failures, together with a location-guided protection routing strategy to quickly deal with unexpected failures. Extensive evaluations driven by realistic constellation information show that, StarCure can protect routing against various failures, achieving close-to-100% reachability and better performance restoration with acceptable system overhead, as compared to other existing resilience solutions.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=INFOCOM 2023
|confname =EMNLP'25
|link=https://ieeexplore.ieee.org/document/10229104
|link = https://arxiv.org/abs/2501.18460
|title=Achieving Resilient and Performance-Guaranteed Routing in Space-Terrestrial Integrated Networks
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Luwei
|speaker=Youwei Ran
|date=2024-03-29}}
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract=We propose a Communication-aware Pruning (CaP) algorithm, a novel distributed inference framework for distributing DNN computations across a physical network. Departing from conventional pruning methods, CaP takes the physical network topology into consideration and produces DNNs that are communication-aware, designed for both accurate and fast execution over such a distributed deployment. Our experiments on CIFAR-10 and CIFAR-100, two deep learning benchmark datasets, show that CaP beats state of the art competitors by up to 4% w.r.t. accuracy on benchmarks. On experiments over real-world scenarios, it simultaneously reduces total execution time by 27%–68% at negligible performance decrease (less than 1%).
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=INFOCOM 2023
|confname =CoRL'24
|link=https://ieeexplore.ieee.org/document/10229043
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Communication-aware DNN pruning
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Shuhong
|speaker=Yi Zhou
|date=2024-03-29}}
|date=2025-12-12
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}