Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-10-24 10:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Immersive telepresence has the potential to revolutionize remote communication by offering a highly interactive and engaging user experience. However, state-of-the-art exchanges large volumes of 3D content to achieve satisfactory visual quality, resulting in substantial Internet bandwidth consumption. To tackle this challenge, we introduce MagicStream, a first-of-its-kind semantic-driven immersive telepresence system that effectively extracts and delivers compact semantic details of captured 3D representation of users, instead of traditional bit-by-bit communication of raw content. To minimize bandwidth consumption while maintaining low end-to-end latency and high visual quality, MagicStream incorporates the following key innovations: (1) efficient extraction of user's skin/cloth color and motion semantics based on lighting characteristics and body keypoints, respectively; (2) novel, real-time human body reconstruction from motion semantics; and (3) on-the-fly neural rendering of users' immersive representation with color semantics. We implement a prototype of MagicStream and extensively evaluate its performance through both controlled experiments and user trials. Our results show that, compared to existing schemes, MagicStream can drastically reduce Internet bandwidth usage by up to 1195X while maintaining good visual quality.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname = Sensys'24
|confname =EMNLP'25
|link = https://dl.acm.org/doi/10.1145/3666025.3699344
|link = https://arxiv.org/abs/2501.18460
|title= MagicStream: Bandwidth-conserving Immersive Telepresence via Semantic Communication
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker= Mengfan Wang
|speaker=Youwei Ran
|date=2025-10-31
|date=2025-12-12
}}{{Latest_seminar
}}
|abstract =To fulfill computing demands of numerous Internet of Things (IoT) devices in infrastructure-free regions, low earth orbit (LEO) satellite edge computing has been proposed in recent years, to circumvent the latency arising from long backhaul and link congestion in traditional cloud computing mode. This article proposes a novel time-varying graph-based collaborative task offloading strategy for LEO satellite IoT to reduce task computing latency. To this end, a computing coordinate graph (CCG) is designed to characterize the time-varying topology and resource distribution of LEO satellite networks. When a task is offloaded to LEO satellite networks because local computing capability is unable to meet latency constraint, the position of the task access satellite in the CCG is determined first. Then, the expanded hop counts from all satellite nodes to the access satellite are calculated, which informs the partitioning of different node sets. Afterwards, considering both link and on-board computing resources, with the access satellite as the reference node, the minimum total task computing latency for each node set is obtained in an ascending order of the expanded hop counts. Finally, the minimum one among obtained latency values is the anticipated total task computing latency. Simulation results demonstrate the effectiveness of the proposed task offloading strategy in reducing task computing latency.
{{Latest_seminar
|confname = Systems Joural
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|link = https://ieeexplore.ieee.org/document/11024019
|confname =CoRL'24
|title= Collaborative Task Offloading for LEO Satellite Internet of Things: A Novel Computing Coordinate Graph-Based Approach
|link = https://openreview.net/forum?id=FO6tePGRZj
|speaker= Yifei Zhou
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|date=2025-10-31
|speaker=Yi Zhou
|date=2025-12-12
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}