Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(281 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-09-17 8:40
|time='''2025-09-25 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Drowsy driving is one of the biggest threats to driving safety, which has drawn much public attention in recent years. Thus, a simple but robust system that can remind drivers of drowsiness levels with off-the-shelf devices (e.g., smartphones) is very necessary. With this motivation, we explore the feasibility of using acoustic sensors on smartphones to detect drowsy driving. Through analyzing real driving data to study characteristics of drowsy driving, we find some unique patterns of Doppler shift caused by three typical drowsy behaviours (i.e., nodding, yawning and operating steering wheel), among which operating steering wheels is also related to drowsiness levels. Then, a real-time Drowsy Driving Detection system named D^3 -Guard is proposed based on the acoustic sensing abilities of smartphones. We adopt several effective feature extraction methods, and carefully design a high-accuracy detector based on LSTM networks for the early detection of drowsy driving. Besides, measures to distinguish drowsiness levels are also introduced in the system by analyzing the data of operating steering wheel. Through extensive experiments with five drivers in real driving environments, D 3 -Guard detects drowsy driving actions with an average accuracy of 93.31%, as well as classifies drowsiness levels with an average accuracy of 86%.
|abstract = Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
|confname=TMC2021
|confname =INFOCOM'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9055089
|link = https://ieeexplore.ieee.org/abstract/document/11044587
|title=Real-Time Detection for Drowsy Driving via Acoustic Sensing on Smartphones
|title= HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing
|speaker=Shiqi Hu
|speaker= Yi Zhou
}}
|date=2025-9-26
{{Latest_seminar
}}{{Latest_seminar
|abstract=The emerging mobile-edge computing paradigm provides opportunities for the resource-hungry mobile devices (MDs) to migrate computation. In order to satisfy the requirements of MDs in terms of latency and energy consumption, recent researches proposed diverse computation offloading schemes. However, they either fail to consider the potential computing resources at the edge, or ignore the selfish behavior of users and the dynamic resource adaptability. To this end, we study the computation offloading problem and take into consideration the dynamic available resource of idle devices and the selfish behavior of users. Furthermore, we propose a game theoretic offloading method by regarding the computation offloading process as a resource contention game, which minimizes the individual task execution cost and the system overhead. Utilizing the potential game, we prove the existence of Nash equilibrium (NE), and give a lightweight algorithm to help the game reach a NE, wherein each user can find an optimal offloading strategy based on three contention principles. Additionally, we conduct analysis of computational complexity and the Price of Anarchy (PoA), and deploy three baseline methods to compare with our proposed scheme. Numerical results illustrate that our scheme can provide high-quality services to users, and also demonstrate the effectiveness, scalability and dynamic resource adaptability of our proposed algorithm in a multiuser network.
|abstract = Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).
|confname=IoTJ2021
|confname =NSDI'25
|link=https://ieeexplore.ieee.org/abstract/document/9386238
|link = https://www.usenix.org/conference/nsdi25/presentation/garg
|title=D2D-Enabled Mobile-Edge Computation Offloading for Multiuser IoT Network
|title= Large Network UWB Localization: Algorithms and Implementation
|speaker=Wenjie Huang
|speaker=Bangguo
|date=2025-9-26
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 21:23, 25 September 2025

Time: 2025-09-25 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM'25] HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing, Yi Zhou
    Abstract: Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
  2. [NSDI'25] Large Network UWB Localization: Algorithms and Implementation, Bangguo
    Abstract: Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}