Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(259 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-09-17 8:40
|time='''2025-03-28 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Drowsy driving is one of the biggest threats to driving safety, which has drawn much public attention in recent years. Thus, a simple but robust system that can remind drivers of drowsiness levels with off-the-shelf devices (e.g., smartphones) is very necessary. With this motivation, we explore the feasibility of using acoustic sensors on smartphones to detect drowsy driving. Through analyzing real driving data to study characteristics of drowsy driving, we find some unique patterns of Doppler shift caused by three typical drowsy behaviours (i.e., nodding, yawning and operating steering wheel), among which operating steering wheels is also related to drowsiness levels. Then, a real-time Drowsy Driving Detection system named D^3 -Guard is proposed based on the acoustic sensing abilities of smartphones. We adopt several effective feature extraction methods, and carefully design a high-accuracy detector based on LSTM networks for the early detection of drowsy driving. Besides, measures to distinguish drowsiness levels are also introduced in the system by analyzing the data of operating steering wheel. Through extensive experiments with five drivers in real driving environments, D 3 -Guard detects drowsy driving actions with an average accuracy of 93.31%, as well as classifies drowsiness levels with an average accuracy of 86%.
|abstract = Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
|confname=TMC2021
|confname =INFOCOM24'
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9055089
|link = https://ieeexplore.ieee.org/abstract/document/10621440
|title=Real-Time Detection for Drowsy Driving via Acoustic Sensing on Smartphones
|title= Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning
|speaker=Shiqi Hu
|speaker=Dongting
}}
|date=2025-03-28
{{Latest_seminar
}}{{Latest_seminar
|abstract=The emerging mobile-edge computing paradigm provides opportunities for the resource-hungry mobile devices (MDs) to migrate computation. In order to satisfy the requirements of MDs in terms of latency and energy consumption, recent researches proposed diverse computation offloading schemes. However, they either fail to consider the potential computing resources at the edge, or ignore the selfish behavior of users and the dynamic resource adaptability. To this end, we study the computation offloading problem and take into consideration the dynamic available resource of idle devices and the selfish behavior of users. Furthermore, we propose a game theoretic offloading method by regarding the computation offloading process as a resource contention game, which minimizes the individual task execution cost and the system overhead. Utilizing the potential game, we prove the existence of Nash equilibrium (NE), and give a lightweight algorithm to help the game reach a NE, wherein each user can find an optimal offloading strategy based on three contention principles. Additionally, we conduct analysis of computational complexity and the Price of Anarchy (PoA), and deploy three baseline methods to compare with our proposed scheme. Numerical results illustrate that our scheme can provide high-quality services to users, and also demonstrate the effectiveness, scalability and dynamic resource adaptability of our proposed algorithm in a multiuser network.
|abstract = Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.
|confname=IoTJ2021
|confname =INFOCOM25'
|link=https://ieeexplore.ieee.org/abstract/document/9386238
|link = https://re.public.polimi.it/bitstream/11311/1281986/1/final_infocom25_link_configuration_for_entanglement_routing.pdf
|title=D2D-Enabled Mobile-Edge Computation Offloading for Multiuser IoT Network
|title= Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks
|speaker=Wenjie Huang
|speaker=Yaliang
}}
|date=2025-03-27
{{Latest_seminar
|abstract=The Long Range (LoRa) protocol for low-power wide-area networks (LPWANs) is a strong candidate to enable the massive roll-out of the Internet of Things (IoT) because of its low cost, impressive sensitivity (-137dBm), and massive scalability potential. As tens of thousands of tiny LoRa devices are deployed over large geographic areas, a key component to the success of LoRa will be the development of reliable and robust authentication mechanisms. To this end, Radio Frequency Fingerprinting (RFFP) through deep learning (DL) has been heralded as an effective zero-power supplement or alternative to energy-hungry cryptography. Existing work on LoRa RFFP has mostly focused on small-scale testbeds and low-dimensional learning techniques; however, many challenges remain. Key among them are authentication techniques robust to a wide variety of channel variations over time and supporting a vast population of devices.In this work, we advance the state of the art by presenting (i) the first massive experimental evaluation of DL RFFP and (ii) new data augmentation techniques for LoRa designed to counter the degradation introduced by the wireless channel. Specifically, we collected and publicly shared more than 1TB of waveform data from 100 bit-similar devices (with identical manufacturing processes) over different deployment scenarios (outdoor vs. indoor) and spanning several days. We train and test diverse DL models (convolutional and recurrent neural networks) using either preamble or payload data slices. We compare three different representations of the received signal: (i) IQ, (ii) amplitude-phase, and (iii) spectrogram. Finally, we propose a novel data augmentation technique called DeepLoRa to enhance the LoRa RFFP performance. Results show that (i) training the CNN models with IQ representation is not always the best combo in fingerprinting LoRa radios; training CNNs and RNN-LSTMs with amplitude-phase and spectrogram representations may increase the fingerprinting performance in small and medium-scale testbeds; (ii) using only payload data in the fingerprinting process outperforms preamble only data, and (iii) DeepLoRa data augmentation technique improves the classification accuracy from 19% to 36% in the RFFP challenging case of training on data collected on a different day than the testing data. Moreover, DeepLoRa raises the accuracy from 82% to 91% when training and testing 100 devices with data collected on the same day.
|confname=MobiHoc2021
|link=https://dl.acm.org/doi/pdf/10.1145/3466772.3467054
|title=DeepLoRa: Fingerprinting LoRa Devices at Scale Through Deep Learning and Data Augmentation
|speaker=Wenliang Mao
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:10, 27 March 2025

Time: 2025-03-28 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM24'] Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning, Dongting
    Abstract: Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
  2. [INFOCOM25'] Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks, Yaliang
    Abstract: Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}