Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(248 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-05 8:40
|time='''2025-04-11 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|Major cities worldwide have millions of cameras deployed for surveillance, business intelligence, traffic control, crime prevention, etc. Real-time analytics on video data demands intensive computation resources and high energy consumption. Traditional cloud-based video analytics relies on large centralized clusters to ingest video streams. With edge computing, we can offload compute-intensive analysis tasks to nearby servers, thus mitigating long latency incurred by data transmission via wide area networks. When offloading video frames from the front-end device to an edge server, the application configuration (i.e., frame sampling rate and frame resolution) will impact several metrics, such as energy consumption, analytics accuracy and user-perceived latency. In this paper, we study the configuration selection and bandwidth allocation for multiple video streams, which are connected to the same edge node sharing an upload link. We propose an efficient online algorithm, called JCAB, which jointly optimizes configuration adaption and bandwidth allocation to address a number of key challenges in edge-based video analytics systems, including edge capacity limitation, unknown network variation, intrusive dynamics of video contents. Our algorithm is developed based on Lyapunov optimization and Markov approximation, works online without requiring future information, and achieves a provable performance bound. We also extend the proposed algorithms to the multi-edge scenario in which each user or video stream has an additional choice about which edge server to connect. Extensive evaluation results show that the proposed solutions can effectively balance the analytics accuracy and energy consumption while keeping low system latency in a variety of settings.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=IEEE/ACM Transactions on Networking ( Early Access )
|confname = Mobisys'24
|link=https://ieeexplore.ieee.org/document/9525630
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Adaptive Configuration Selection and Bandwidth Allocation for Edge-Based Video Analytics
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Rong Cong
|speaker= Zhenhua
|date=2025-04-18
}}
}}
{{Latest_seminar
{{Latest_seminar
|Millions of cameras at edge are being deployed to power a variety of different deep learning applications. However, the frames captured by these cameras are not always pristine - they can be distorted due to lighting issues, sensor noise, compression etc. Such distortions not only deteriorate visual quality, they impact the accuracy of deep learning applications that process such video streams. In this work, we introduce AQuA, to protect application accuracy against such distorted frames by scoring the level of distortion in the frames. It takes into account the analytical quality of frames, not the visual quality, by learning a novel metric, classifier opinion score, and uses a lightweight, CNN-based, object-independent feature extractor. AQuA accurately scores distortion levels of frames and generalizes to multiple different deep learning applications. When used for filtering poor quality frames at edge, it reduces high-confidence errors for analytics applications by 17%. Through filtering, and due to its low overhead (14ms), AQuA can also reduce computation time and average bandwidth usage by 25%.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=ACM/IEEE Symposium on Edge Computing 2021
|confname = TC'24
|link=https://arxiv.org/abs/2101.09752
|link = https://ieeexplore.ieee.org/document/10360355
|title=AQuA: Analytical Quality Assessment for Optimizing Video Analytics Systems
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Rong Cong
|speaker=Mengfan
}}
|date=2025-04-18
{{Latest_seminar
|This paper presents the design and implementation of PCube, a phase-based parallel packet decoder for concurrent transmissions of LoRa nodes. The key enabling technology behind PCube is a novel air-channel phase measurement technique which is able to extract phase differences of air-channels between LoRa nodes and multiple antennas of a gateway. PCube leverages the reception diversities of multiple receiving antennas of a gateway and scales the concurrent transmissions of a large number of LoRa nodes, even exceeding the number of receiving antennas at a gateway. As a phase-based parallel decoder, PCube provides a new dimension to resolve collisions and supports more concurrent transmissions by complementing time and frequency based parallel decoders. PCube is implemented and evaluated with synchronized software defined radios and off-the-shelf LoRa nodes in both indoors and outdoors. Results demonstrate that PCube can substantially outperform state-of-the-art works in terms of aggregated throughput by 4.9× and the number of concurrent nodes by up to . More importantly, PCube scales well with the number of receiving antennas of a gateway, which is promising to break the barrier of concurrent transmissions.
|confname= MobiCom'21
|link= https://dl.acm.org/doi/abs/10.1145/3447993.3483268
|title=Defuse: PCube: scaling LoRa concurrent transmissions with reception diversities
|speaker=Kaiwen Zheng
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}