Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(238 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-19 8:40
|time='''2025-04-11 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = The network control plays a vital role in the mega satellite constellation (MSC) to coordinate massive network nodes to ensure the effectiveness and reliability of operations and services for future space wireless communications networks. One of the critical issues in satellite network control is how to design an optimal network control structure (ONCS) by configuring the least number of controllers to achieve efficient control interaction within a limited number of hops. Considering the wide coverage, rising capacity, and no geographical constraints of space platforms, this paper contributes to designing the ONCS by constructing an optimal space control network (SCN) to improve the temporal effectiveness of network control. Specifically, we formulate the optimal SCN construction problem from the perspective of satellite coverage factors, and apply geometric topology analysis to derive both the conditions for constructing the optimal SCN and the formulaic conclusions for SCN and MSC configurations (i.e., scale and structure). From numerical results, we investigate the tradeoff between network scale, the number of controllers, and control delays in several satellite network control scenarios, to provide guidelines for the MSC control. We also design the optimal SCN for an existing MSC system to demonstrate the effectiveness of the proposed ONCS.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname= TWC 2021
|confname = Mobisys'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9505263
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Mega Satellite Constellation System Optimization: From Network Control Structure Perspective
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Shiqi
|speaker= Zhenhua
|date=2025-04-18
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Massive machine-type communications (mMTC) is one of the main services delivered by the fifth Generation (5G) mobile network. The traditional cellular architecture where all devices connect to the base station is not energy efficient. For this reason, the use of device-to-device (D2D) communications is considered to reduce the energy consumption of mMTC devices. The main idea is to use nearby user equipment (UE) as a relay and establish with it D2D communication. However, the relay selection process also consumes energy, and this consumption can be significant compared to the energy consumed during the data transmission phase. In this paper, we propose a distributed energy-efficient D2D relaying mechanism for mMTC applications. This mechanism favors the selection of the UEs with low path loss with the mMTC device. Through mathematical analysis and simulations, we show that our mechanism allows a reduction of the total energy consumption of mMTC devices (up to 75% compared to direct transmission) when they have an unfavorable link budget. Moreover, our mechanism achieves almost constant energy consumption for a large range of UE densities and distances between the mMTC device and the base station.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname= TWC 2021
|confname = TC'24
|link= https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9357996
|link = https://ieeexplore.ieee.org/document/10360355
|title=Distance-Aware Relay Selection in an Energy-Efficient Discovery Protocol for 5G D2D Communication
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Luwei
|speaker=Mengfan
}}
|date=2025-04-18
{{Latest_seminar
|abstract = The revolution of online shopping in recent years demands corresponding evolution in delivery services in urban areas. To cater to this trend, delivery by the crowd has become an alternative to the traditional delivery services thanks to the advances in ubiquitous computing. Notably, some studies use public transportation for crowdsourcing delivery, given its low-cost delivery network with millions of passengers as potential couriers. However, multiple practical impact factors are not considered in existing public-transport-based crowdsourcing delivery studies due to a lack of data and limited ubiquitous computing infrastructures in the past. In this work, we design a crowdsourcing delivery system based on public transport, considering the practical factors of time constraints, multi-hop delivery, and profits. To incorporate the impact factors, we build a reinforcement learning model to learn the optimal order dispatching strategies from massive passenger data and package data. The order dispatching problem is formulated as a sequential decision making problem for the packages routing, i.e., select the next station for the package. A delivery time estimation module is designed to accelerate the training process and provide statistical delivery time guarantee. Three months of real-world public transportation data and one month of package delivery data from an on-demand delivery platform in Shenzhen are used in the evaluation. Compared with existing crowdsourcing delivery algorithms and widely used baselines, we achieve a 40% increase in profit rates and a 29% increase in delivery rates. Comparison with other reinforcement learning algorithms shows that we can improve the profit rate and the delivery rate by 9% and 8% by using time estimation in action filtering. We share the data used in the project to the community for other researchers to validate our results and conduct further research.1 [1].
|confname= IMWUT 2021
|link= https://dl.acm.org/doi/pdf/10.1145/3478117
|title=A City-Wide Crowdsourcing Delivery System with Reinforcement Learning
|speaker=Wenjie
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}