Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(266 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-26 8:40
|time='''2025-12-05 10:30'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Underwater wireless sensor networks (UWSNs) have emerged as an enabling technology for aquatic monitoring. However, data delivery in UWSNs is challenging, due to the harsh aquatic environment and characteristics of the underwater acoustic channel. In recent years, underwater nodes with multi-modal communication capabilities have been proposed to create communication diversity and improve data delivery in UWSNs. Nevertheless, less attention has been devoted to the design of networking protocols leveraging multi-modal communication capabilities of underwater nodes. In this paper, we propose a novel stochastic model for the study of opportunistic routing (OR) in multi-modal UWSNs. We also design two candidate set selection heuristics, named OMUS-E and OMUS-D, for the joint selection of the most suitable acoustic modem for data transmission and next-hop forwarder candidate nodes at each hop, aimed to reduce the energy consumption and improve the network data delivery ratio in multi-modal UWSNs, respectively. Numerical results showed that both proposed heuristics reduced the energy consumption by 65%, 70%, and 75% as compared to the DBR, HydroCast, and GEDAR classical related work protocols, while maintaining a similar data delivery ratio. Furthermore, the proposed solutions outperformed the CAPTAIN routing protocol in terms of data delivery ratio, while maintaining comparable energy consumption.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname= TWC 2021
|confname =ACL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=939476
|link = https://arxiv.org/abs/2406.16441
|title=OMUS: Efficient Opportunistic Routing in Multi-Modal Underwater Sensor Networks
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Xianyang
|speaker=Bairong Liu
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = LoRa, as a representative Low-Power Wide-Area Network (LPWAN) technology, can provide long-range communication for battery-powered IoT devices with a 10-year lifetime. LoRa links in practice, however, experience high dynamics in various environments. When the SNR falls below the threshold (e.g., in the building), a LoRa device disconnects from the network. We propose Falcon, which addresses the link dynamics by enabling data transmission for very low SNR or even disconnected LoRa links. At the heart of Falcon, we reveal that low SNR LoRa links that cannot deliver packets can still introduce interference to other LoRa transmissions. Therefore, Falcon transmits data bits on the low SNR link by selectively interfering with other LoRa transmissions. We address practical challenges in Falcon design. We propose a low-power channel activity detection method to detect other LoRa transmissions for selective interference. To interfere with the so-called interference-resilient LoRa, we accurately estimate the time and frequency offsets on LoRa packets and propose an adaptive frequency adjusting strategy to maximize the interference. We implement Falcon, all using commercial off-the-shelf LoRa devices, and extensively evaluate its performance. The results show that Falcon can provide reliable communication links for disconnected LoRa devices and achieves the SNR boundary upto 7.5 dB lower than that of standard LoRa.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname= MobiCom 2021
|confname =TMC'25
|link= https://dl.acm.org/doi/pdf/10.1145/3447993.3483250
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=Combating link dynamics for reliable lora connection in urban settings
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Wangxiong
|speaker=Mengyu
|date=2025-12-05
}}
}}
{{Latest_seminar
|abstract = The revolution of online shopping in recent years demands corresponding evolution in delivery services in urban areas. To cater to this trend, delivery by the crowd has become an alternative to the traditional delivery services thanks to the advances in ubiquitous computing. Notably, some studies use public transportation for crowdsourcing delivery, given its low-cost delivery network with millions of passengers as potential couriers. However, multiple practical impact factors are not considered in existing public-transport-based crowdsourcing delivery studies due to a lack of data and limited ubiquitous computing infrastructures in the past. In this work, we design a crowdsourcing delivery system based on public transport, considering the practical factors of time constraints, multi-hop delivery, and profits. To incorporate the impact factors, we build a reinforcement learning model to learn the optimal order dispatching strategies from massive passenger data and package data. The order dispatching problem is formulated as a sequential decision making problem for the packages routing, i.e., select the next station for the package. A delivery time estimation module is designed to accelerate the training process and provide statistical delivery time guarantee. Three months of real-world public transportation data and one month of package delivery data from an on-demand delivery platform in Shenzhen are used in the evaluation. Compared with existing crowdsourcing delivery algorithms and widely used baselines, we achieve a 40% increase in profit rates and a 29% increase in delivery rates. Comparison with other reinforcement learning algorithms shows that we can improve the profit rate and the delivery rate by 9% and 8% by using time estimation in action filtering. We share the data used in the project to the community for other researchers to validate our results and conduct further research.1 [1].
|confname= IMWUT 2021
|link= https://dl.acm.org/doi/pdf/10.1145/3478117
|title=A City-Wide Crowdsourcing Delivery System with Reinforcement Learning
|speaker=Wenjie
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}