Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(219 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-26 8:40
|time='''2024-12-06 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Underwater wireless sensor networks (UWSNs) have emerged as an enabling technology for aquatic monitoring. However, data delivery in UWSNs is challenging, due to the harsh aquatic environment and characteristics of the underwater acoustic channel. In recent years, underwater nodes with multi-modal communication capabilities have been proposed to create communication diversity and improve data delivery in UWSNs. Nevertheless, less attention has been devoted to the design of networking protocols leveraging multi-modal communication capabilities of underwater nodes. In this paper, we propose a novel stochastic model for the study of opportunistic routing (OR) in multi-modal UWSNs. We also design two candidate set selection heuristics, named OMUS-E and OMUS-D, for the joint selection of the most suitable acoustic modem for data transmission and next-hop forwarder candidate nodes at each hop, aimed to reduce the energy consumption and improve the network data delivery ratio in multi-modal UWSNs, respectively. Numerical results showed that both proposed heuristics reduced the energy consumption by 65%, 70%, and 75% as compared to the DBR, HydroCast, and GEDAR classical related work protocols, while maintaining a similar data delivery ratio. Furthermore, the proposed solutions outperformed the CAPTAIN routing protocol in terms of data delivery ratio, while maintaining comparable energy consumption.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname= TWC 2021
|confname =SIGCOMM'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=939476
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=OMUS: Efficient Opportunistic Routing in Multi-Modal Underwater Sensor Networks
|title= In-Network Address Caching for Virtual Networks
|speaker=Xianyang
|speaker=Dongting
}}
|date=2024-12-06
{{Latest_seminar
}}{{Latest_seminar
|abstract = LoRa, as a representative Low-Power Wide-Area Network (LPWAN) technology, can provide long-range communication for battery-powered IoT devices with a 10-year lifetime. LoRa links in practice, however, experience high dynamics in various environments. When the SNR falls below the threshold (e.g., in the building), a LoRa device disconnects from the network. We propose Falcon, which addresses the link dynamics by enabling data transmission for very low SNR or even disconnected LoRa links. At the heart of Falcon, we reveal that low SNR LoRa links that cannot deliver packets can still introduce interference to other LoRa transmissions. Therefore, Falcon transmits data bits on the low SNR link by selectively interfering with other LoRa transmissions. We address practical challenges in Falcon design. We propose a low-power channel activity detection method to detect other LoRa transmissions for selective interference. To interfere with the so-called interference-resilient LoRa, we accurately estimate the time and frequency offsets on LoRa packets and propose an adaptive frequency adjusting strategy to maximize the interference. We implement Falcon, all using commercial off-the-shelf LoRa devices, and extensively evaluate its performance. The results show that Falcon can provide reliable communication links for disconnected LoRa devices and achieves the SNR boundary upto 7.5 dB lower than that of standard LoRa.
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|confname= MobiCom 2021
|confname = IDEA
|link= https://dl.acm.org/doi/pdf/10.1145/3447993.3483250
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|title=Combating link dynamics for reliable lora connection in urban settings
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|speaker=Wangxiong
|speaker=Mengyu
}}
|date=2024-12-06
{{Latest_seminar
|abstract = The revolution of online shopping in recent years demands corresponding evolution in delivery services in urban areas. To cater to this trend, delivery by the crowd has become an alternative to the traditional delivery services thanks to the advances in ubiquitous computing. Notably, some studies use public transportation for crowdsourcing delivery, given its low-cost delivery network with millions of passengers as potential couriers. However, multiple practical impact factors are not considered in existing public-transport-based crowdsourcing delivery studies due to a lack of data and limited ubiquitous computing infrastructures in the past. In this work, we design a crowdsourcing delivery system based on public transport, considering the practical factors of time constraints, multi-hop delivery, and profits. To incorporate the impact factors, we build a reinforcement learning model to learn the optimal order dispatching strategies from massive passenger data and package data. The order dispatching problem is formulated as a sequential decision making problem for the packages routing, i.e., select the next station for the package. A delivery time estimation module is designed to accelerate the training process and provide statistical delivery time guarantee. Three months of real-world public transportation data and one month of package delivery data from an on-demand delivery platform in Shenzhen are used in the evaluation. Compared with existing crowdsourcing delivery algorithms and widely used baselines, we achieve a 40% increase in profit rates and a 29% increase in delivery rates. Comparison with other reinforcement learning algorithms shows that we can improve the profit rate and the delivery rate by 9% and 8% by using time estimation in action filtering. We share the data used in the project to the community for other researchers to validate our results and conduct further research.1 [1].
|confname= IMWUT 2021
|link= https://dl.acm.org/doi/pdf/10.1145/3478117
|title=A City-Wide Crowdsourcing Delivery System with Reinforcement Learning
|speaker=Wenjie
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}