Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m (wenliang updates seminars)
 
(225 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2021-12-24 9:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Object detection is a fundamental building block of video analytics applications. While Neural Networks (NNs)-based object detection models have shown excellent accuracy on benchmark datasets, they are not well positioned for high-resolution images inference on resource-constrained edge devices. Common approaches, including down-sampling inputs and scaling up neural networks, fall short of adapting to video content changes and various latency requirements. This paper presents Remix, a flexible framework for high-resolution object detection on edge devices. Remix takes as input a latency budget, and come up with an image partition and model execution plan which runs off-the-shelf neural networks on non-uniformly partitioned image blocks. As a result, it maximizes the overall detection accuracy by allocating various amount of compute power onto different areas of an image. We evaluate Remix on public dataset as well as real-world videos collected by ourselves. Experimental results show that Remix can either improve the detection accuracy by 18%-120% for a given latency budget, or achieve up to 8.1× inference speedup with accuracy on par with the state-of-the-art NNs.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname= MobiCom 2021
|confname = Mobisys'24
|link=https://dl.acm.org/doi/abs/10.1145/3447993.3483274
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Flexible high-resolution object detection on edge devices with tunable latency
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Rong
|speaker= Zhenhua
}}
|date=2025-04-18
{{Latest_seminar
|abstract = Deep Neural Networks (DNNs) have become an essential and important supporting technology for smart Internet-of-Things (IoT) systems. Due to the high computational costs of large-scale DNNs, it might be infeasible to directly deploy them in energy-constrained IoT devices. Through offloading computation-intensive tasks to the cloud or edges, the computation offloading technology offers a feasible solution to execute DNNs. However, energy-efficient offloading for DNN based smart IoT systems with deadline constraints in the cloud-edge environments is still an open challenge. To address this challenge, we first design a new system energy consumption model, which takes into account the runtime, switching, and computing energy consumption of all participating servers (from both the cloud and edge) and IoT devices. Next, a novel energy-efficient offloading strategy based on a Self-adaptive Particle Swarm Optimization algorithm using the Genetic Algorithm operators (SPSO-GA) is proposed. This new strategy can efficiently make offloading decisions for DNN layers with layer partition operations, which can lessen the encoding dimension and improve the execution time of SPSO-GA. Simulation results demonstrate that the proposed strategy can significantly reduce energy consumption compared to other classic methods.
|confname= TPDS 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9497712
|title=Energy-Efficient Offloading for DNN-Based Smart IoT Systems in Cloud-Edge Environments
|speaker=Wenjie
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Data collection with mobile elements can improve energy efficiency and balance load distribution in wireless sensor networks (WSNs). However, complex network environments bring about inconvenience of path design. This work addresses the network environment issue, by presenting an objective-variable tour planning (OVTP) strategy for mobile data gathering in partitioned WSNs. Unlike existing studies of connected networks, our work focuses on disjoint networks with connectivity requirement and serves delay-hash applications as well as energy-efficient scenarios respectively. We first design a converging-aware location selection mechanism, which macroscopically converges rendezvous points (RPs) to lay a foundation of a short tour. We then develop a delay-aware path formation mechanism, which constructs a short tour connecting all segments by a new convex hull algorithm and a new genetic operation. In addition, we devise an energy-aware path extension mechanism, which selects appropriate extra RPs according to specific metrics in order to reduce the energy depletion of data transmission. Extensive simulations demonstrate the effectiveness and advantages of the new strategy in terms of path length, energy depletion, and data collection ratio.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname= TMC 2022
|confname = TC'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9119834
|link = https://ieeexplore.ieee.org/document/10360355
|title=Objective-Variable Tour Planning for Mobile Data Collection in Partitioned Sensor Networks
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Zhuoliu
|speaker=Mengfan
|date=2025-04-18
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}