Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(238 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-5-16 10:30'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Localizing ground devices (GDs) is an important requirement for a wide variety of applications, such as infrastructure monitoring, precision agriculture, search and rescue operations, to name a few. To this end, unmanned aerial vehicles (UAVs) or drones offer a promising technology due to their flexibility. However, the distance measurements performed using a drone, an integral part of a localization procedure, incur several errors that affect the localization accuracy. In this paper, we provide analytical expressions for the impact of different kinds of measurement errors on the ground distance between the UAV and GDs. We review three range-based and three range-free localization algorithms, identify their source of errors, and analytically derive the error bounds resulting from aggregating multiple inaccurate measurements. We then extend the range-free algorithms for improved accuracy. We validate our theoretical analysis and compare the observed localization error of the algorithms after collecting data from a testbed using ten GDs and one drone, equipped with ultra wide band (UWB) antennas and operating in an open field. Results show that our analysis closely matches with experimental localization errors. Moreover, compared to their original counterparts, the extended range-free algorithms significantly improve the accuracy.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname= TMC 2022
|confname =ACL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9184260
|link = https://arxiv.org/abs/2406.16441
|title= Measurement Errors in Range-Based Localization Algorithms for UAVs: Analysis and Experimentation
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Luwei
|speaker=Bairong Liu
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = This work proposes AMIS, an edge computing-based adaptive video streaming system. AMIS explores the power of edge computing in three aspects. First, with video contents pre-cached in the local buffer, AMIS is content-aware which adapts the video playout strategy based on the scene features of video contents and quality of experience (QoE) of users. Second, AMIS is channel-aware which measures the channel conditions in real-time and estimates the wireless bandwidth. Third, by integrating the content features and channel estimation, AMIS applies the deep reinforcement learning model to optimize the playout strategy towards the best QoE. Therefore, AMIS is an intelligent content- and channel-aware scheme which fully explores the intelligence of edge computing and adapts to general environments and QoE requirements. Using trace-driven simulations, we show that AMIS can succeed in improving the average QoE by 14%-46% as compared to the state-of-the-art adaptive bitrate algorithms.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname= INFOCOM 2021
|confname =TMC'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488426
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=AMIS:EdgeComputingBasedAdaptiveMobileVideoStreaming
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Silence
|speaker=Mengyu
|date=2025-12-05
}}
}}
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}