Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(196 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-6-6 10:30'''
|time='''2025-03-28 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = The development of intelligent traffic light control systems is essential for smart transportation management. While some efforts have been made to optimize the use of individual traffic lights in an isolated way, related studies have largely ignored the fact that the use of multi-intersection traffic lights is spatially influenced, as well as the temporal dependency of historical traffic status for current traffic light control. To that end, in this article, we propose a novel Spatio-Temporal Multi-Agent Reinforcement Learning (STMARL) framework for effectively capturing the spatio-temporal dependency of multiple related traffic lights and control these traffic lights in a coordinating way. Specifically, we first construct the traffic light adjacency graph based on the spatial structure among traffic lights. Then, historical traffic records will be integrated with current traffic status via Recurrent Neural Network structure. Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method. Finally, the experimental results on both synthetic and real-world data have demonstrated the effectiveness of our STMARL framework, which also provides an insightful understanding of the influence mechanism among multi-intersection traffic lights.
|abstract = Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
|confname= TMC 2022
|confname =INFOCOM24'
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9240060
|link = https://ieeexplore.ieee.org/abstract/document/10621440
|title=STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for Cooperative Traffic Light Control
|title= Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning
|speaker=Xianyang
|speaker=Dongting
}}
|date=2025-03-28
{{Latest_seminar
}}{{Latest_seminar
|abstract = Low-Power Wide-Area Networks (LPWANs) are an emerging Internet-of-Things (IoT) paradigm marked by low-power and long-distance communication. Among them, LoRa is widely deployed for its unique characteristics and open-source technology. By adopting the Chirp Spread Spectrum (CSS) modulation, LoRa enables low signal-to-noise ratio (SNR) communication. However, the standard demodulation method does not fully exploit the properties of chirp signals, thus yields a sub-optimal SNR threshold under which the decoding fails. Consequently, the communication range and energy consumption have to be compromised for robust transmission. This paper presents NELoRa, a neural-enhanced LoRa demodulation method, exploiting the feature abstraction ability of deep learning to support ultra-low SNR LoRa communication. Taking the spectrogram of both amplitude and phase as input, we first design a mask-enabled Deep Neural Network (DNN) filter that extracts multi-dimension features to capture clean chirp symbols. Second, we develop a spectrogram-based DNN decoder to decode these chirp symbols accurately. Finally, we propose a generic packet demodulation system by incorporating a method that generates high-quality chirp symbols from received signals. We implement and evaluate NELoRa on both indoor and campus-scale outdoor testbeds. The results show that NELoRa achieves 1.84-2.35 dB SNR gains and extends the battery life up to 272% (~0.38-1.51 years) in average for various LoRa configurations.
|abstract = Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.
|confname= Sensys 2021
|confname =INFOCOM25'
|link=https://cse.msu.edu/~caozc/papers/sensys21-li.pdf
|link = https://re.public.polimi.it/bitstream/11311/1281986/1/final_infocom25_link_configuration_for_entanglement_routing.pdf
|title=NELoRa: Towards Ultra-low SNR LoRa Communication with Neural-enhanced Demodulation
|title= Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks
|speaker=Kaiwen
|speaker=Yaliang
|date=2025-03-27
}}
}}


=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:10, 27 March 2025

Time: 2025-03-28 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM24'] Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning, Dongting
    Abstract: Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
  2. [INFOCOM25'] Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks, Yaliang
    Abstract: Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}