Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(151 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-6-27 10:30'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Recent advances in network and mobile computing.  
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=talk
|confname =SIGCOMM'24
|link=[Resource:Paper Carnival 2022|Paper Carnival 2022
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=]
|title= In-Network Address Caching for Virtual Networks
|speaker=all
|speaker=Dongting
 
|date=2024-12-06
 
}}{{Latest_seminar
 
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|confname = IDEA
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|speaker=Mengyu
|date=2024-12-06
}}
}}
'''Visible Light Communication--Wenliang'''
[Sensys 2021] [https://dl.acm.org/doi/pdf/10.1145/3485730.3485934 CurveLight: An Accurate and Practical Indoor Positioning System]
[Sensys 2021] [https://dl.acm.org/doi/pdf/10.1145/3485730.3485948 SpiderWeb: Enabling Through-Screen Visible Light Communication]
'''Lora--Kaiwen'''
[ICNP2022] [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9155474 X-MAC: Achieving High Scalability via Imperfect-Orthogonality Aware Scheduling in LPWAN]
'''Response to Mobility--Luwei'''
[Infocom2022] [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796811 Enabling QoE Support for Interactive Applications over Mobile Edge with High User Mobility]
[Infocom2022] [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796968 User Experience Oriented Task Computation for UAV-Assisted MEC System]
[TMC2022] [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9343712 ECHO: Efficient Zero-Control-Packet Broadcasting for Mobile Ad Hoc Networks]
'''Mobility--Zhuoliu'''
[MobiCom21] [https://www.microsoft.com/en-us/research/uploads/prod/2021/09/Visage_Mobicom_2021.pdf Visage: enabling timely analytics for drone imagery]
'''Offloading, Delivery--Wenjie'''
[Infocom2022] [https://ieeexplore.ieee.org/document/9796843 An Efficient Two-Layer Task Offloading Scheme for MEC Networks with Multiple Services Providers]
[Infocom2022] [https://ieeexplore.ieee.org/document/9796714/ Two Time-Scale Joint Service Caching and Task Offloading for UAV-assisted Mobile Edge Computing]
[Infocom2022] [https://ieeexplore.ieee.org/document/9796763/ AoDNN: An Auto-Offloading Approach to Optimize Deep Inference for Fostering Mobile Web]
[TMC2022] [https://ieeexplore.ieee.org/document/9238459 A Force-Directed Approach to Seeking Route Recommendation in Ride-on-Demand Service Using Multi-Source Urban Data]
[Xinyu][INFOCOM 2022] [https://ieeexplore.ieee.org/document/9796908/ IoTMosaic: Inferring User Activities from IoT Network Traffic in Smart Homes]
[Jiajun][INFOCOM 2022] [https://ieeexplore.ieee.org/document/9796661/ Kalmia: A Heterogeneous QoS-aware Scheduling Framework for DNN Tasks on Edge Servers]
'''Video Service in Edge Networks--Congrong'''
[SigComm 2022] [https://dl.acm.org/doi/pdf/10.1145/3544216.3544218 NeuroScaler: neural video enhancement at scale]
[INFOCOM 2022] [https://ieeexplore.ieee.org/document/9796984/ FlexPatch: Fast and Accurate Object Detection for On-device High-Resolution Live Video Analytics]
[INFOCOM 2022] [https://ieeexplore.ieee.org/document/9796657/ DNN-Driven Compressive Offloading for Edge-Assisted Semantic Video Segmentation]
[MobiHoc 2021] [https://dl.acm.org/doi/pdf/10.1145/3466772.3467034 Task Offloading with Uncertain Processing Cycles]
'''Edge, offloading, caching--Qingyong'''
[Infocom 2022] [https://ieeexplore.ieee.org/document/9796969/ Online File Caching in Latency-Sensitive Systems with Delayed Hits and Bypassing]
[Infocom 2022] [https://dl.acm.org/doi/10.1109/INFOCOM48880.2022.9796799 Distributed Cooperative Caching in Unreliable Edge Environments]
[TMC 2022] [https://ieeexplore.ieee.org/abstract/document/9832640 Reverse Auction-based Computation Offloading and Resource Allocation in Mobile Cloud-Edge Computing]
[YuanQi][NSDI 2022] [https://www.microsoft.com/en-us/research/uploads/prod/2021/07/nsdi22spring-final74.pdf Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers]
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}