Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(184 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-10-10 9:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
|abstract = Hidden screen-camera communication techniques emerge as a new paradigm that embeds data imperceptibly into regular videos while remaining unobtrusive to human viewers. Three key goals on imperceptible, high rate, and reliable communication are desirable but conflicting, and existing solutions usually made a trade-off among them. In this paper, we present the design and implementation of ChromaCode, a screen-camera communication system that achieves all three goals simultaneously. In our design, we consider for the first time color space for perceptually uniform lightness modifications. On this basis, we design an outcome-based adaptive embedding scheme, which adapts to both pixel lightness and regional texture. Last, we propose a concatenated code scheme for robust coding and devise multiple techniques to overcome various screen-camera channel errors. Our prototype and experiments demonstrate that ChromaCode achieves remarkable raw throughputs of >700 kbps, data goodputs of 120 kbps with BER of 0.05, and with fully imperceptible flicker for viewing proved by user study, which significantly outperforms previous works.
|confname=TMC 2021
|link=https://dl.acm.org/doi/pdf/10.1145/3241539.3241543
|title=ChromaCode: A Fully Imperceptible Screen-Camera Communication System
|speaker=Mengyu}}


{{Latest_seminar
{{Latest_seminar
|abstract = We present MVPose, a novel system designed to enable real-time multi-person pose estimation (PE) on commodity mobile devices, which consists of three novel techniques. First, MVPose takes a motion-vector-based approach to fast and accurately track the human keypoints across consecutive frames, rather than running expensive human-detection model and pose-estimation model for every frame. Second, MVPose designs a mobile-friendly PE model that uses lightweight feature extractors and multi-stage network to significantly reduce the latency of pose estimation without compromising the model accuracy. Third, MVPose leverages the heterogeneous computing resources of both CPU and GPU to execute the pose estimation model for multiple persons in parallel, which further reduces the total latency. We present extensive experiments to evaluate the effectiveness of the proposed tecniques by implemented the MVPose on five off-the-shelf commercial smartphones. Evaluation results show that MVPose achieves over 30 frames per second PE with 4 persons per frame, which significantly outperforms the state-of-the-art baseline, with a speedup of up to 5.7 and 3.8 in latency on CPU and GPU, respectively. Compared with baseline, MVPose achieves an improvement of 10.1% in multi-person PE accuracy. Furthermore, MVPose achieves up to 74.3% and 57.6% energy-per-frame saving on average.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=TMC 2021
|confname =ACL'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9673682
|link = https://arxiv.org/abs/2406.16441
|title=MVPose:Realtime Multi-Person Pose Estimation using Motion Vector on Mobile Devices
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Silence}}
|speaker=Bairong Liu
 
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Games are energy-intensive applications on mobile devices. Optimizing the energy efficiency of games is hence critical for battery-limited mobile devices. Although the advent of energy-aware scheduling (EAS) integrated in recent devices has provided opportunities for improved energy management, the framework is not specifically tuned for game applications. In this paper, we aim to improve the energy efficiency of game applications running on EAS-enabled mobile devices. To this end, we first analyze the functional characteristics of games, and investigate the source of the energy inefficiency. We then propose a scheme, called System-level Energy-optimization for Game Applications (SEGA), to improve the energy efficiency of games. SEGA governs CPU and GPU power consumption in a tightly coupled manner by employing three key techniques: (1) Lsync-aware GPU DVFS governor, (2) adaptive capacity clamping, and (3) on-demand touch boosting. We implemented SEGA on the latest Android-based smartphones. The evaluation results for 23 popular games showed that SEGA reduced the energy consumption of the Google Pixel 2 XL and Samsung Galaxy S9 Plus smartphones, at the device level, by 6.1–22.3 and 4.0–11.7 percent, respectively, with a quality of service (QoS) degradation of 1.1 and 0.5 percent, on average.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=TMC 2021
|confname =TMC'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9352566
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=Optimizing Energy Consumption of Mobile Games
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Luwei}}
|speaker=Mengyu
 
|date=2025-12-05
 
}}
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}