Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(151 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-10-18 16:30'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = As a representative technology of low power wide area network, LoRa has been widely adopted to many appli-cations. A fundamental question in LoRa is how to improve its reception quality in ultra-low SNR scenarios. Different from existing studies that exploit either spatial or temporal correlation for LoRa reception recovery, this paper jointly leverages the fine-grained spatial-temporal correlation among multiple gateways. We exploit the spatial and temporal correlation in LoRa packets to jointly process received signals so that the fine-grained offsets including Central Frequency Offset (CFO), Sampling Time Offset (STO) and Sampling Frequency Offset (SFO) are well compensated, and signals from multiple gateways are combined coherently. Moreover, a deep learning based soft decoding scheme is developed to integrate the energy distribution of each symbol into the decoder to further enhance the coding gain in a LoRa packet. We evaluate our work with commodity LoRa devices (i.e., Semtech SX1278) and gateways (i.e., USRP-B210) in both indoor and outdoor environments. Extensive experiment results show that our work achieves 4.6dB higher signal-to-noise ratio (SNR) and 1.5× lower bit error rate (BER) compared with existing approaches.  
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=ICNP 2022
|confname = Mobisys'24
|link=https://www.jianguoyun.com/p/DXDTOyEQ_LXjBxiLjt8EIAA
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=CONST: Exploiting Spatial-Temporal Correlation for Multi-Gateway based Reliable LoRa Reception
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Kaiwen}}
|speaker= Zhenhua
|date=2025-04-18
}}
{{Latest_seminar
{{Latest_seminar
|abstract = This paper proposes Mandheling, the first system that enables highly resource-efficient on-device training by orchestrating the mixed-precision training with on-chip Digital Signal Processing (DSP) offloading. Mandheling fully explores the advantages of DSP in integer-based numerical calculation by four novel techniques: (1) a CPU-DSP co-scheduling scheme to mitigate the overhead from DSP-unfriendly operators; (2) a self-adaptive rescaling algorithm to reduce the overhead of dynamic rescaling in backward propagation; (3) a batch-splitting algorithm to improve the DSP cache efficiency; (4) a DSP-compute subgraph reusing mechanism to eliminate the preparation overhead on DSP. We have fully implemented Mandheling and demonstrated its effectiveness through extensive experiments. The results show that, compared to the state-of-the-art DNN engines from
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
TFLite and MNN, Mandheling reduces the per-batch training time by 5.5× and the energy consumption by 8.9× on average. In end-to-end training tasks, Mandheling reduces up to 10.7× convergence time and 13.1× energy consumption, with only 1.9%–2.7% accuracy loss compared to the FP32 precision setting.
|confname = TC'24
|confname=Mobicom 2022
|link = https://ieeexplore.ieee.org/document/10360355
|link=https://arxiv.org/pdf/2206.07509.pdf
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|title=Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading
|speaker=Mengfan
|speaker=Wenjie}}
|date=2025-04-18
{{Latest_seminar
}}
|abstract = Vehicular edge computing (VEC) is a promising paradigm based on the Internet of vehicles to provide computing resources for end users and relieve heavy traffic burden for cellular networks. In this paper, we consider a VEC network with dynamic topologies, unstable connections and unpredictable movements. Vehicles inside can offload computation tasks to available neighboring VEC clusters formed by onboard resources, with the purpose of both minimizing system energy consumption and satisfying task latency constraints. For online task scheduling, existing researches either design heuristic algorithms or leverage machine learning, e.g., deep reinforcement learning (DRL). However, these algorithms are not efficient enough because of their low searching efficiency and slow convergence speeds for large-scale networks. Instead, we propose an imitation learning enabled online task scheduling algorithm with near-optimal performance from the initial stage. Specially, an expert can obtain the optimal scheduling policy by solving the formulated optimization problem with a few samples offline. For online learning, we train agent policies by following the expert’s demonstration with an acceptable performance gap in theory. Performance results show that our solution has a significant advantage with more than 50 percent improvement compared with the benchmark.
|confname=TMC 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9151371
|title=Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing
|speaker=Zhenguo}}
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}