Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(134 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-10-18 16:30'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = As a representative technology of low power wide area network, LoRa has been widely adopted to many appli-cations. A fundamental question in LoRa is how to improve its reception quality in ultra-low SNR scenarios. Different from existing studies that exploit either spatial or temporal correlation for LoRa reception recovery, this paper jointly leverages the fine-grained spatial-temporal correlation among multiple gateways. We exploit the spatial and temporal correlation in LoRa packets to jointly process received signals so that the fine-grained offsets including Central Frequency Offset (CFO), Sampling Time Offset (STO) and Sampling Frequency Offset (SFO) are well compensated, and signals from multiple gateways are combined coherently. Moreover, a deep learning based soft decoding scheme is developed to integrate the energy distribution of each symbol into the decoder to further enhance the coding gain in a LoRa packet. We evaluate our work with commodity LoRa devices (i.e., Semtech SX1278) and gateways (i.e., USRP-B210) in both indoor and outdoor environments. Extensive experiment results show that our work achieves 4.6dB higher signal-to-noise ratio (SNR) and 1.5× lower bit error rate (BER) compared with existing approaches.  
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=ICNP 2022
|confname =SIGCOMM'24
|link=https://www.jianguoyun.com/p/DXDTOyEQ_LXjBxiLjt8EIAA
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=CONST: Exploiting Spatial-Temporal Correlation for Multi-Gateway based Reliable LoRa Reception
|title= In-Network Address Caching for Virtual Networks
|speaker=Kaiwen}}
|speaker=Dongting
{{Latest_seminar
|date=2024-12-06
|abstract = This paper proposes Mandheling, the first system that enables highly resource-efficient on-device training by orchestrating the mixed-precision training with on-chip Digital Signal Processing (DSP) offloading. Mandheling fully explores the advantages of DSP in integer-based numerical calculation by four novel techniques: (1) a CPU-DSP co-scheduling scheme to mitigate the overhead from DSP-unfriendly operators; (2) a self-adaptive rescaling algorithm to reduce the overhead of dynamic rescaling in backward propagation; (3) a batch-splitting algorithm to improve the DSP cache efficiency; (4) a DSP-compute subgraph reusing mechanism to eliminate the preparation overhead on DSP. We have fully implemented Mandheling and demonstrated its effectiveness through extensive experiments. The results show that, compared to the state-of-the-art DNN engines from
}}{{Latest_seminar
TFLite and MNN, Mandheling reduces the per-batch training time by 5.5× and the energy consumption by 8.9× on average. In end-to-end training tasks, Mandheling reduces up to 10.7× convergence time and 13.1× energy consumption, with only 1.9%–2.7% accuracy loss compared to the FP32 precision setting.
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|confname=Mobicom 2022
|confname = IDEA
|link=https://arxiv.org/pdf/2206.07509.pdf
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|title=Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|speaker=Wenjie}}
|speaker=Mengyu
{{Latest_seminar
|date=2024-12-06
|abstract = Vehicular edge computing (VEC) is a promising paradigm based on the Internet of vehicles to provide computing resources for end users and relieve heavy traffic burden for cellular networks. In this paper, we consider a VEC network with dynamic topologies, unstable connections and unpredictable movements. Vehicles inside can offload computation tasks to available neighboring VEC clusters formed by onboard resources, with the purpose of both minimizing system energy consumption and satisfying task latency constraints. For online task scheduling, existing researches either design heuristic algorithms or leverage machine learning, e.g., deep reinforcement learning (DRL). However, these algorithms are not efficient enough because of their low searching efficiency and slow convergence speeds for large-scale networks. Instead, we propose an imitation learning enabled online task scheduling algorithm with near-optimal performance from the initial stage. Specially, an expert can obtain the optimal scheduling policy by solving the formulated optimization problem with a few samples offline. For online learning, we train agent policies by following the expert’s demonstration with an acceptable performance gap in theory. Performance results show that our solution has a significant advantage with more than 50 percent improvement compared with the benchmark.
}}
|confname=TMC 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9151371
|title=Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing
|speaker=Zhenguo}}
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}