Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(127 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-11-08 16:30'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Low Power Wide Area Networks (LPWAN) have become one of the key techniques to provide long-range, low-power communication for large-scale devices in the Internet of Things. However, LPWAN devices in real deployments (e.g.,in buildings and basements) suffer from low-quality links due to signal attenuation, leading to coverage holes and significant deployment overhead. In this work, we propose Ostinato to enable communication for weak links and to enhance the coverage for real deployments of COTS LoRa. The key idea of Ostinato is to transform the original packet to a pseudo packet with repeated symbols and to concentrate the energy of multiple symbols to enhance the signal SNR. To address practical challenges, we reverse engineer the entire coding and modulation process of LoRa and propose a method to generate repeated symbols on COTS LoRa by manipulating input data bits. Thus, Ostinato can be directly used for widely deployed LoRa nodes without hardware modification. We achieve weak packet detection, synchronization, and effective decoding on the receiver side by concentrating energy from multiple symbols with phase offsets. We implement Ostinato on Software Defined Radio (SDR) platform and extensively evaluate its performance. The evaluation results show that Ostinato achieves an 8.5 dB gain on receiving sensitivity and 2.88× gain on the coverage compared with COTS LoRa.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=ICNP2022
|confname =SIGCOMM'24
|link=https://www.jianguoyun.com/p/DUT5aHYQ_LXjBxiBx-UEIAA
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=Ostinato: Combating LoRa Weak Links in Real Deployments
|title= In-Network Address Caching for Virtual Networks
|speaker=Wenliang}}
|speaker=Dongting
{{Latest_seminar
|date=2024-12-06
|abstract = Mobile crowd sensing (MCS) is a promising paradigm which leverages sensor-embedded mobile devices to collect and share data. The key challenging issues in designing an MCS system include selecting appropriate users to participate in a specific sensing task and designing efficient data sensing and transmission policies for data aggregation. In mobile edge networks, the limitation on network resources including bandwidth and energy affects the design of MCS significantly. Specifically, the limited resources affect whether and how to select users for a sensing task, and the bandwidth allocated to a user affects its data sensing and transmission policies. Since user selection, bandwidth allocation, data sensing and transmission are closely coupled issues in MCS, we focus on designing a unified framework for joint sensing and communication in this paper, by jointly optimizing the aforementioned four policies under resource constraints. Simulation results show that the proposed unified framework significantly outperforms several baseline solutions without considering wireless link vulnerability and/or resource limitations.
}}{{Latest_seminar
|confname=TMC2022
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|link=https://eprints.gla.ac.uk/274277/1/274277.pdf
|confname = IDEA
|title=A Unified Framework for Joint Sensing and Communication in Resource Constrained Mobile Edge Networks
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|speaker=Xianyang}}
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
{{Latest_seminar
|speaker=Mengyu
|abstract = Federated learning (FL) has attracted growing attentions via data-private collaborative training on decentralized clients. However, most existing methods unrealistically assume object classes of the overall framework are fixed over time. It makes the global model suffer from significant catastrophic forgetting on old classes in real-world scenarios, where local clients often collect new classes continuously and have very limited storage memory to store old classes. Moreover, new clients with unseen new classes may participate in the FL training, further aggravating the catastrophic forgetting of global model. To address these challenges, we develop a novel Global-Local Forgetting Compensation (GLFC) model, to learn a global class-incremental model for alleviating the catastrophic forgetting from both local and global perspectives. Specifically, to address local forgetting caused by class imbalance at the local clients, we design a class-aware gradient compensation loss and a class-semantic relation distillation loss to balance the forgetting of old classes and distill consistent inter-class relations across tasks. To tackle the global forgetting brought by the non-i.i.d class imbalance across clients, we propose a proxy server that selects the best old global model to assist the local relation distillation. Moreover, a prototype gradient-based communication mechanism is developed to protect the privacy. Our model outperforms state-of-the-art methods by 4.4% 15.1% in terms of average accuracy on representative benchmark datasets. The code is available at https://github.com/conditionWang/FCIL.
|date=2024-12-06
|confname=CVPR 2022
}}
|link=https://openaccess.thecvf.com/content/CVPR2022/papers/Dong_Federated_Class-Incremental_Learning_CVPR_2022_paper.pdf
|title=Federated Class-Incremental Learning
|speaker=Jianqi}}
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}