Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(126 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-11-25 10:20'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we present a low-maintenance, wind-powered, battery-free, biocompatible, tree wearable, and intelligent sensing system, namely IoTree, to monitor water and nutrient levels inside a living tree. IoTree system includes tiny-size, biocompatible, and implantable sensors that continuously measure the impedance variations inside the living tree's xylem, where water and nutrients are transported from the root to the upper parts. The collected data are then compressed and transmitted to a base station located at up to 1.8 kilometers (approximately 1.1 miles) away. The entire IoTree system is powered by wind energy and controlled by an adaptive computing technique called block-based intermittent computing, ensuring the forward progress and data consistency under intermittent power and allowing the firmware to execute with the most optimal memory and energy usage. We prototype IoTree that opportunistically performs sensing, data compression, and long-range communication tasks without batteries. During in-lab experiments, IoTree also obtains the accuracy of 91.08% and 90.51% in measuring 10 levels of nutrients, NH3 and K2O, respectively. While tested with Burkwood Viburnum and White Bird trees in the indoor environment, IoTree data strongly correlated with multiple watering and fertilizing events. We also deployed IoTree on a grapevine farm for 30 days, and the system is able to provide sufficient measurements every day.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=Mobicom2022
|confname =SIGCOMM'24
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3567652
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=IoTree: a battery-free wearable system with biocompatible sensors for continuous tree health monitoring
|title= In-Network Address Caching for Virtual Networks
|speaker=Pengfei}}
|speaker=Dongting
{{Latest_seminar
|date=2024-12-06
|abstract = With the rapid development and deployment of 5G wireless technology, mobile edge computing (MEC) has emerged as a new computing paradigm to facilitate a large variety of infrastructures at the network edge to reduce user-perceived communication delay. One of the fundamental problems in this new paradigm is to preserve satisfactory quality-of-service (QoS) for mobile users in light of densely dispersed wireless communication environment and often capacity-constrained MEC nodes. Such user-perceived QoS, typically in terms of the end-to-end delay, is highly vulnerable to both access network bottleneck and communication delay. Previous works have primarily focused on optimizing the communication delay through dynamic service placement, while ignoring the critical effect of access network selection on the access delay. In this work, we study the problem of jointly optimizing the access network selection and service placement for MEC, with the objective of improving the QoS in a cost-efficient manner by judiciously balancing the access delay, communication delay, and service switching cost. Specifically, we propose an efficient online framework to decompose a long-term time-varying optimization problem into a series of one-shot subproblems. To address the NP-hardness of the one-shot problem, we design a computationally-efficient two-phase algorithm based on matching and game theory, which achieves a near-optimal solution. Both rigorous theoretical analysis on the optimality gap and extensive trace-driven simulations are conducted to validate the efficacy of our proposed solution.
}}{{Latest_seminar
|confname=TMC2022
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9373980
|confname = IDEA
|title=An Online Framework for Joint Network Selection and Service Placement in Mobile Edge Computing
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|speaker=Kun}}
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
{{Latest_seminar
|speaker=Mengyu
|abstract = Recent years have witnessed an emerging class of real-time applications, e.g., autonomous driving, in which resource-constrained edge platforms need to execute a set of real-time mixed Deep Learning (DL) tasks concurrently. Such an application paradigm poses major challenges due to the huge compute workload of deep neural network models, diverse performance requirements of different tasks, and the lack of real-time support from existing DL frameworks. In this paper, we present RT-mDL, a novel framework to support mixed real-time DL tasks on edge platform with heterogeneous CPU and GPU resource. RT-mDL aims to optimize the mixed DL task execution to meet their diverse real-time/accuracy requirements by exploiting unique compute characteristics of DL tasks. RT-mDL employs a novel storage-bounded model scaling method to generate a series of model variants, and systematically optimizes the DL task execution by joint model variants selection and task priority assignment. To improve the CPU/GPU utilization of mixed DL tasks, RT-mDL also includes a new priority-based scheduler which employs a GPU packing mechanism and executes the CPU/GPU tasks independently. Our implementation on an F1/10 autonomous driving testbed shows that, RT-mDL can enable multiple concurrent DL tasks to achieve satisfactory real-time performance in traffic light detection and sign recognition. Moreover, compared to state-of-the-art baselines, RT-mDL can reduce deadline missing rate by 40.12% while only sacrificing 1.7% model accuracy.
|date=2024-12-06
|confname=Sensys 2021
}}
|link=https://dl.acm.org/doi/pdf/10.1145/3485730.3485938
|title=RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms
|speaker=Jiajun}}
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}