Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(139 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-11-25 10:20'''
|time='''2025-03-28 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we present a low-maintenance, wind-powered, battery-free, biocompatible, tree wearable, and intelligent sensing system, namely IoTree, to monitor water and nutrient levels inside a living tree. IoTree system includes tiny-size, biocompatible, and implantable sensors that continuously measure the impedance variations inside the living tree's xylem, where water and nutrients are transported from the root to the upper parts. The collected data are then compressed and transmitted to a base station located at up to 1.8 kilometers (approximately 1.1 miles) away. The entire IoTree system is powered by wind energy and controlled by an adaptive computing technique called block-based intermittent computing, ensuring the forward progress and data consistency under intermittent power and allowing the firmware to execute with the most optimal memory and energy usage. We prototype IoTree that opportunistically performs sensing, data compression, and long-range communication tasks without batteries. During in-lab experiments, IoTree also obtains the accuracy of 91.08% and 90.51% in measuring 10 levels of nutrients, NH3 and K2O, respectively. While tested with Burkwood Viburnum and White Bird trees in the indoor environment, IoTree data strongly correlated with multiple watering and fertilizing events. We also deployed IoTree on a grapevine farm for 30 days, and the system is able to provide sufficient measurements every day.
|abstract = Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
|confname=Mobicom2022
|confname =INFOCOM24'
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3567652
|link = https://ieeexplore.ieee.org/abstract/document/10621440
|title=IoTree: a battery-free wearable system with biocompatible sensors for continuous tree health monitoring
|title= Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning
|speaker=Pengfei}}
|speaker=Dongting
{{Latest_seminar
|date=2025-03-28
|abstract = With the rapid development and deployment of 5G wireless technology, mobile edge computing (MEC) has emerged as a new computing paradigm to facilitate a large variety of infrastructures at the network edge to reduce user-perceived communication delay. One of the fundamental problems in this new paradigm is to preserve satisfactory quality-of-service (QoS) for mobile users in light of densely dispersed wireless communication environment and often capacity-constrained MEC nodes. Such user-perceived QoS, typically in terms of the end-to-end delay, is highly vulnerable to both access network bottleneck and communication delay. Previous works have primarily focused on optimizing the communication delay through dynamic service placement, while ignoring the critical effect of access network selection on the access delay. In this work, we study the problem of jointly optimizing the access network selection and service placement for MEC, with the objective of improving the QoS in a cost-efficient manner by judiciously balancing the access delay, communication delay, and service switching cost. Specifically, we propose an efficient online framework to decompose a long-term time-varying optimization problem into a series of one-shot subproblems. To address the NP-hardness of the one-shot problem, we design a computationally-efficient two-phase algorithm based on matching and game theory, which achieves a near-optimal solution. Both rigorous theoretical analysis on the optimality gap and extensive trace-driven simulations are conducted to validate the efficacy of our proposed solution.
}}{{Latest_seminar
|confname=TMC2022
|abstract = Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9373980
|confname =INFOCOM25'
|title=An Online Framework for Joint Network Selection and Service Placement in Mobile Edge Computing
|link = https://re.public.polimi.it/bitstream/11311/1281986/1/final_infocom25_link_configuration_for_entanglement_routing.pdf
|speaker=Kun}}
|title= Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks
{{Latest_seminar
|speaker=Yaliang
|abstract = Recent years have witnessed an emerging class of real-time applications, e.g., autonomous driving, in which resource-constrained edge platforms need to execute a set of real-time mixed Deep Learning (DL) tasks concurrently. Such an application paradigm poses major challenges due to the huge compute workload of deep neural network models, diverse performance requirements of different tasks, and the lack of real-time support from existing DL frameworks. In this paper, we present RT-mDL, a novel framework to support mixed real-time DL tasks on edge platform with heterogeneous CPU and GPU resource. RT-mDL aims to optimize the mixed DL task execution to meet their diverse real-time/accuracy requirements by exploiting unique compute characteristics of DL tasks. RT-mDL employs a novel storage-bounded model scaling method to generate a series of model variants, and systematically optimizes the DL task execution by joint model variants selection and task priority assignment. To improve the CPU/GPU utilization of mixed DL tasks, RT-mDL also includes a new priority-based scheduler which employs a GPU packing mechanism and executes the CPU/GPU tasks independently. Our implementation on an F1/10 autonomous driving testbed shows that, RT-mDL can enable multiple concurrent DL tasks to achieve satisfactory real-time performance in traffic light detection and sign recognition. Moreover, compared to state-of-the-art baselines, RT-mDL can reduce deadline missing rate by 40.12% while only sacrificing 1.7% model accuracy.
|date=2025-03-27
|confname=Sensys 2021
}}
|link=https://dl.acm.org/doi/pdf/10.1145/3485730.3485938
|title=RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms
|speaker=Jiajun}}
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:10, 27 March 2025

Time: 2025-03-28 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM24'] Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning, Dongting
    Abstract: Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
  2. [INFOCOM25'] Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks, Yaliang
    Abstract: Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}