Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(171 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-13 9:30'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = This paper presents the design and implementation of HyLink which aims to fill the gap between limited link capacity of LoRa and the diverse bandwidth requirements of IoT systems. At the heart of HyLink is a novel technique named parallel Chirp Spread Spectrum modulation, which tunes the number of modulated symbols to adapt bitrates according to channel conditions. Over strong link connections, HyLink fully exploits the link capability to transmit more symbols and thus transforms good channel SNRs to high link throughput. While for weak links, it conservatively modulates one symbol and concentrates all transmit power onto the symbol to combat poor channels, which can achieve the same performance as legacy LoRa. HyLink addresses a series of technical challenges on encoding and decoding of multiple payloads in a single packet, aiming at amortizing communication overheads in terms of channel access, radio-on power, transmission air-time, etc. We perform extensive experiments to evaluate the effectiveness of HyLink. Evaluations show that HyLink produces up to 10× higher bit rates than LoRa when channel SNRs are higher than 5 dB. HyLink inter-operates with legacy LoRa devices and can support new emerging traffic-intensive IoT applications.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=Sensys2022
|confname =ACL'24
|link=https://www4.comp.polyu.edu.hk/~csyqzheng/papers/HyLink-SenSys22.pdf
|link = https://arxiv.org/abs/2406.16441
|title=HyLink: Towards High Throughput LPWANs with LoRa Compatible Communication
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Mengyu}}
|speaker=Bairong Liu
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile crowd sensing (MCS) is a popular sensing paradigm that leverages the power of massive mobile workers to perform various location-based sensing tasks. To assign workers with suitable tasks, recent research works investigated mobility prediction methods based on probabilistic and statistical models to estimate the worker’s moving behavior, based on which the allocation algorithm is designed to match workers with tasks such that workers do not need to deviate from their daily routes and tasks can be completed as many as possible. In this paper, we propose a new multi-task allocation method based on mobility prediction, which differs from the existing works by (1) making use of workers’ historical trajectories more comprehensively by using the fuzzy logic system to obtain more accurate mobility prediction and (2) designing a global heuristic searching algorithm to optimize the overall task completion rate based on the mobility prediction result, which jointly considers workers’ and tasks’ spatiotemporal features. We evaluate the proposed prediction method and task allocation algorithm using two real-world datasets. The experimental results validate the effectiveness of the proposed methods compared against baselines.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=TMC 2023
|confname =TMC'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9451627
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=Multi-Task Allocation in Mobile Crowd SensingWith Mobility Prediction
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Zhenguo}}
|speaker=Mengyu
 
|date=2025-12-05
 
}}
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}