Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(172 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-20 9:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile crowd sensing (MCS) is a popular sensing paradigm that leverages the power of massive mobile workers to perform various location-based sensing tasks. To assign workers with suitable tasks, recent research works investigated mobility prediction methods based on probabilistic and statistical models to estimate the worker’s moving behavior, based on which the allocation algorithm is designed to match workers with tasks such that workers do not need to deviate from their daily routes and tasks can be completed as many as possible. In this paper, we propose a new multi-task allocation method based on mobility prediction, which differs from the existing works by (1) making use of workers’ historical trajectories more comprehensively by using the fuzzy logic system to obtain more accurate mobility prediction and (2) designing a global heuristic searching algorithm to optimize the overall task completion rate based on the mobility prediction result, which jointly considers workers’ and tasks’ spatiotemporal features. We evaluate the proposed prediction method and task allocation algorithm using two real-world datasets. The experimental results validate the effectiveness of the proposed methods compared against baselines.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=Mobicom 2022
|confname =EMNLP'25
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3560544
|link = https://arxiv.org/abs/2501.18460
|title=BSMA: Scalable LoRa networks using full duplex gateways
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Kaiwen}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = On-device deep neural network (DNN) training holds the potential to enable a rich set of privacy-aware and infrastructure-independent personalized mobile applications. However, despite advancements in mobile hardware, locally training a complex DNN is still a nontrivial task given its resource demands. In this work, we show that the limited memory resources on mobile devices are the main constraint and propose Sage as a framework for efficiently optimizing memory resources for on-device DNN training. Specifically, Sage configures a flexible computation graph for DNN gradient evaluation and reduces the memory footprint of the graph using operator- and graph-level optimizations. In run-time, Sage employs a hybrid of gradient checkpointing and micro-batching techniques to dynamically adjust its memory use to the available system memory budget. Using implementation on off-the-shelf smartphones, we show that Sage enables local training of complex DNN models by reducing memory use by more than 20-fold compared to a baseline approach. We also show that Sage successfully adapts to run-time memory budget variations, and evaluate its energy consumption to show Sage's practical applicability.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=MobiSys 2022
|confname =CoRL'24
|link=https://dl.acm.org/doi/pdf/10.1145/3498361.3539765
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=Memory-efficient DNN Training on Mobile Devices
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Wenjie}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights two major factors that limit performance: (a) lack of efficient communication methods between the serverless functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must complete before starting the next DAG stage. To address these limitations, we propose WISEFUSE, an automated approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective or budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group of parallel invocations of a function in one VM to improve resource sharing among the parallel workers to reduce skew. (3) Resource Allocation assigns the right VM size to each function or function bundle in the DAG to reduce the E2E latency and cost. We implement WISEFUSE to evaluate it experimentally using three popular serverless applications with different DAG structures, memory footprints, and intermediate data sizes. Compared to competing approaches and other alternatives, WISEFUSE shows significant improvements in E2E latency and cost. Specifically, for a machine learning pipeline, WISEFUSE achieves P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower than SONIC without increasing the cost.
}}
|confname=Proceedings of the ACM on Measurement and Analysis of Computing Systems 2022
|link=https://dl.acm.org/doi/pdf/10.1145/3530892
|title=WiseFuse: Workload Characterization and DAG Transformation for Serverless Workflows
|speaker=Qinyong}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}