Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(136 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-20 9:30'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Visible light communications (VLC) is a good candidate technology for the 6th generation (6G) wireless communications. Red, green, and blue (RGB) light-emitting diodes (LEDs) based VLC has become an important research branch due to its low price and high reliability. However, the saturation of photodiode (PD) caused by the ambient background light may seriously degrade the bit error rate (BER) performance of an RGB-VLC system's three spatially uncoupled information streams (i.e., red, green, and blue LEDs can transmit different data packets simultaneously) in practical applications. To mitigate the ambient light interference in point-to-point RGB-VLC systems, we propose, PNC-VLC, a network-coded scheme that uses two LEDs with the same color at the transmitter to transmit two different data streams and we make use of the naturally overlapped signals at the receiver to formulate physical-layer network coding (PNC). The adaptivity of PNC-VLC could effectively improve the BER degradation problem caused by the saturation of PD under the influence of ambient light. We conducted simulations based on the parameters of commercial off-the-shelf (COTS) products to prove the superiority of the PNC-VLC under the influence of four typical illuminants. Simulation results show that the PNC-VLC system can maintain a better and more stable system BER performance under different ambient background light conditions. Remarkably, with 2/3 throughput efficiency, PNC-VLC can bring 133.3% gain to the BER performance when compared with RGB-VLC under the Illuminant A interference model, making it a good option for VLC applications with unpredictable ambient background interferences.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=IEEE Photonics Journal 2023
|confname = Mobisys'24
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10028767
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Physical-Layer Network Coding Enhanced Visible Light Communications Using RGB LEDs
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Jiahui}}
|speaker= Zhenhua
|date=2025-04-18
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing (MEC), as a key ingredient of the 5G ecosystem, is envisioned to support demanding applications with stringent latency requirements. The basic idea is to deploy servers close to end-users, e.g., on the network edge-side instead of the remote cloud. While conceptually reasonable, we find that the operational 5G is not coordinated with MEC and thus suffers from intolerable long response latency. In this work, we propose Tutti, which couples 5G RAN and MEC at the user space to assure the performance of latency-critical video analytics. To enable such capacity, Tutti precisely customizes the application service demand by fusing instantaneous wireless dynamics from the 5G RAN and application-layer content changes from edge servers. Tutti then enforces a deadline-sensitive resource provision for meeting the application service demand by real-time interaction between 5G RAN and edge servers in a lightweight and standard-compatible way. We prototype and evaluate Tutti on a software-defined platform, which shows that Tutti reduces the response latency by an average of 61.69% compared with the existing 5G MEC system, as well as negligible interaction costs.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=Mobicom 2022
|confname = TC'24
|link=https://dl.acm.org/doi/pdf/10.1145/3498361.3539765
|link = https://ieeexplore.ieee.org/document/10360355
|title=Tutti: coupling 5G RAN and mobile edge computing for latency-critical video analytics
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Silience}}
|speaker=Mengfan
 
|date=2025-04-18
 
}}
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}