Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(127 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-06 9:30'''
|time='''2025-03-28 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract =Low Power Wide Area Networks (LPWANs) have been shown promising in connecting large-scale low-cost devices with low-power long-distance communication. However, existing LPWANs cannot work well for real deployments due to severe packet collisions. We propose OrthoRa, a new technology which significantly improves the concurrency for low-power long distance LPWAN transmission. The key of OrthoRa is a novel design, Orthogonal Scatter Chirp Spreading Spectrum (OSCSS), which enables orthogonal packet transmissions while providing low SNR communication in LPWANs. Different nodes can send packets encoded with different orthogonal scatter chirps, and the receiver can decode collided packets from different nodes. We theoretically prove that OrthoRa provides very high concurrency for low SNR communication under different scenarios. For real networks, we address practical challenges of multiple-packet detection for collided packets, scatter chirp identification for decoding each packet and accurate packet synchronization with Carrier Frequency Offset. We implement OrthoRa on HackRF One and extensively evaluate its performance. The evaluation results show that OrthoRa improves the network throughput and concurrency by 50⇥ compared with LoRa.
|abstract = Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
|confname=INFOCOM 2023
|confname =INFOCOM24'
|link=https://www.jianguoyun.com/p/DaSn-A0Q_LXjBxjS9f8EIAA
|link = https://ieeexplore.ieee.org/abstract/document/10621440
|title=Push the Limit of LPWANs with Concurrent Transmissions
|title= Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning
|speaker=Wenliang}}
|speaker=Dongting
{{Latest_seminar
|date=2025-03-28
|abstract = Mobile edge computing is a promising computing paradigm enabling mobile devices to offload computation-intensive tasks to nearby edge servers. However, within small-cell networks, the user mobilities can result in uneven spatio-temporal loads, which have not been well studied by considering adaptive load balancing, thus limiting the system performance. Motivated by the data analytics and observations on a real-world user association dataset in a large-scale WiFi system, in this paper, we investigate the mobility-aware online task offloading problem with adaptive load balancing to minimize the total computation costs. However, the problem is intractable directly without prior knowledge of future user mobility behaviors and spatio-temporal computation loads of edge servers. To tackle this challenge, we transform and decompose the original task offloading optimization problem into two sub-problems, i.e., task offloading control ( ToC ) and server grouping ( SeG ). Then, we devise an online control scheme, named MOTO (i.e., M obility-aware O nline T ask O ffloading), which consists of two components, i.e., Long Short Term Memory based algorithm and Dueling Double DQN based algorithm, to efficiently solve the ToC and SeG sub-problems, respectively. Extensive trace-driven experiments are carried out and the results demonstrate the effectiveness of MOTO in reducing computational costs of mobile devices and achieving load balancing when compared to the state-of-the-art benchmarks.
}}{{Latest_seminar
|confname=TMC 2022
|abstract = Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9942345
|confname =INFOCOM25'
|title=MOTO: Mobility-Aware Online Task Offloading with Adaptive Load Balancing in Small-Cell MEC
|link = https://re.public.polimi.it/bitstream/11311/1281986/1/final_infocom25_link_configuration_for_entanglement_routing.pdf
|speaker=Xianyang}}
|title= Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks
{{Latest_seminar
|speaker=Yaliang
|abstract = Edge computing capabilities in 5G wireless networks promise to benefit mobile users: computing tasks can be offloaded from user devices to nearby edge servers, reducing users’ experienced latencies. Few works have addressed how this offloading should handle long-term user mobility: as devices move, they will need to offload to different edge servers, which may require migrating data or state information from one edge server to another. In this paper, we introduce MoDEMS, a system model and architecture that provides a rigorous theoretical framework and studies the challenges of such migrations to minimize the service provider cost and user latency. We show that this cost minimization problem can be expressed as an integer linear programming problem, which is hard to solve due to resource constraints at the servers and unknown user mobility patterns. We show that finding the optimal migration plan is in general NP-hard, and we propose alternative heuristic solution algorithms that perform well in both theory and practice. We finally validate our results with real user mobility traces, ns-3 simulations, and an LTE testbed experiment. Migrations reduce the latency experienced by users of edge applications by 33% compared to previously proposed migration approaches.
|date=2025-03-27
|confname=INFOCOM 2022
}}
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796680
|title=MoDEMS: Optimizing Edge Computing Migrations For User Mobility
|speaker=Zhenguo}}
 
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:10, 27 March 2025

Time: 2025-03-28 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM24'] Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning, Dongting
    Abstract: Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
  2. [INFOCOM25'] Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks, Yaliang
    Abstract: Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}