Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(129 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-20 9:30'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract =Low-power wireless networks have the potential to enable applications that are of great importance to industry and society. However, existing network protocols do not meet the dependability requirements of many scenarios as the failure of a single node or link can completely disrupt communication and take significant time and energy to recover. This paper presents Hydra, a low-power wireless protocol that guarantees robust communication despite arbitrary node and link failures. Unlike most existing deterministic protocols, Hydra steers clear of centralized coordination to avoid a single point of failure. Instead, all nodes are equivalent in terms of protocol logic and configuration, performing coordination tasks such as synchronization and scheduling concurrently. This concept of concurrent coordination relies on a novel distributed consensus algorithm that yields provably unique decisions with low delay and energy overhead. In addition to a theoretical analysis, we evaluate Hydra in a multi-hop network of 23 nodes. Our experiments demonstrate that Hydra withstands random node failures without increasing coordination overhead and that it re-establishes efficient and reliable data exchange within seconds after a major disruption.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=IPSN 2023
|confname = Mobisys'24
|link=https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/602741/ipsn23-22.pdf?sequence=1&isAllowed=y
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Hydra: Concurrent Coordination for Fault-tolerant Networking
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Pengfei}}
|speaker= Zhenhua
|date=2025-04-18
}}
{{Latest_seminar
{{Latest_seminar
|abstract = We report our experiences of developing, deploying, and evaluating MLoc, a smartphone-based indoor localization system for malls. MLoc uses Bluetooth Low Energy RSSI and geomagnetic field strength as fingerprints. We develop efficient approaches for large-scale, outsourced training data collection. We also design robust online algorithms for localizing and tracking users' positions in complex malls. Since 2018, MLoc has been deployed in 7 cities in China, and used by more than 1 million customers. We conduct extensive evaluations at 35 malls in 7 cities, covering 152K m2 mall areas with a total walking distance of 215 km (1,100 km training data). MLoc yields a median location tracking error of 2.4m. We further characterize the behaviors of MLoc's customers (472K users visiting 12 malls), and demonstrate that MLoc is a promising marketing platform through a promotion event. The e-coupons delivered through MLoc yield an overall conversion rate of 22%. To facilitate future research on mobile sensing and indoor localization, we have released a large dataset (43 GB at the time when this paper was published) that contains IMU, BLE, GMF readings, and the localization ground truth collected by trained testers from 37 shopping malls.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=MobiCom 2022
|confname = TC'24
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3517021
|link = https://ieeexplore.ieee.org/document/10360355
|title=Experience: practical indoor localization for malls
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Zhuoliu}}
|speaker=Mengfan
{{Latest_seminar
|date=2025-04-18
|abstract = Low-earth-orbit (LEO) satellite mega-constellations promise broadband, low-latency network infrastructure from space for terrestrial users in remote areas. However, they face new QoS bottlenecks from infrastructure mobility due to the fast-moving LEO satellites and earth’s rotations. Both cause frequent space-ground link churns and challenge the network latency, bandwidth, and availability at the global scale. Today’s LEO networks mask infrastructure mobility with fixed anchors (ground stations) but cause single-point bandwidth/latency bottlenecks. Instead, we design LBP to remove the LEO network’s QoS bottlenecks from infrastructure mobility. LBP removes remote terrestrial fixed anchors via geographic addressing for shorter latencies and more bandwidth. It adopts local, orbit direction-aware geographic routing to avoid global routing updates for high network availability. LBP further shortens the routing paths by refining handover policies by satellites’ orbital directions. Our experiments in controlled testbeds and trace-driven emulations validate LBP’s 1.64× network latency reduction, 9.66× more bandwidth, and improve network availability to 100%.
}}
|confname=IWQoS 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796680
|title=Geographic Low-Earth-Orbit Networking without QoS Bottlenecks from Infrastructure Mobility
|speaker=Kun}}
 
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}