Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminar)
 
(111 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-20 9:30'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=With recent advances, neural networks have become a crucial building block in intelligent IoT systems and sensing applications. However, the excessive computational demand remains a serious impediment to their deployments on low-end IoT devices. With the emergence of edge computing, offloading grows into a promising technique to circumvent end-device limitations. However, transferring data between local and edge devices takes up a large proportion of time in existing offloading frameworks, creating a bottleneck for low-latency intelligent services. In this work, we propose a general framework, called deep compressive offloading. By integrating compressive sensing theory and deep learning, our framework can encode data for offloading into tiny sizes with negligible overhead on local devices and decode the data on the edge server, while offering theoretical guarantees on perfect reconstruction and lossless inference. By trading edge computing resources for data transmission time, our design can significantly reduce offloading latency with almost no accuracy loss. We build a deep compressive offloading system to serve state-of-the-art computer vision and speech recognition services. With comprehensive evaluations, our system can consistently reduce end-to-end latency by 2X to 4X with 1% accuracy loss, compared to state-of-the-art neural network offloading systems. In conditions of limited network bandwidth or intensive background traffic, our system can further speed up the neural network inference by up to 35X 1.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=SenSys 2020
|confname =SIGCOMM'24
|link=https://dl.acm.org/doi/pdf/10.1145/3384419.3430898
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=Deep compressive offloading: speeding up neural network inference by trading edge computation for network latency
|title= In-Network Address Caching for Virtual Networks
|speaker=Crong}}
|speaker=Dongting
{{Latest_seminar
|date=2024-12-06
|abstract = We propose and implement Directory-Based Access Control (DBAC), a flexible and systematic access control approach for geographically distributed multi-administration IoT systems. DBAC designs and relies on a particular module, IoT directory, to store device metadata, manage federated identities, and assist with cross-domain authorization. The directory service decouples IoT access into two phases: discover device information from directories and operate devices through discovered interfaces. DBAC extends attribute-based authorization and retrieves diverse attributes of users, devices, and environments from multi-faceted sources via standard methods, while user privacy is protected. To support resource-constrained devices, DBAC assigns a capability token to each authorized user, and devices only validate tokens to process a request.
}}{{Latest_seminar
|confname=INFOCOM 2022
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796804
|confname = IDEA
|title=DBAC: Directory-Based Access Control for Geographically Distributed IoT Systems
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|speaker=Xinyu}}
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
{{Latest_seminar
|speaker=Mengyu
|abstract = Edge computing is being widely used for video analytics. To alleviate the inherent tension between accuracy and cost, various video analytics pipelines have been proposed to optimize the usage of GPU on edge nodes. Nonetheless, we find that GPU compute resources provisioned for edge nodes are commonly under-utilized due to video content variations, subsampling and filtering at different places of a video analytics pipeline. As opposed to model and pipeline optimization, in this work, we study the problem of opportunistic data enhancement using the non-deterministic and fragmented idle GPU resources. In specific, we propose a task-specific discrimination and enhancement module, and a model-aware adversarial training mechanism, providing a way to exploit idle resources to identify and transform pipeline-specific, low-quality images in an accurate and efficient manner. A multi-exit enhancement model structure and a resource-aware scheduler is further developed to make online enhancement decisions and fine-grained inference execution under latency and GPU resource constraints. Experiments across multiple video analytics pipelines and datasets reveal that our system boosts DNN object detection accuracy by 7.27 -- 11.34% by judiciously allocating 15.81 -- 37.67% idle resources on frames that tend to yield greater marginal benefits from enhancement.
|date=2024-12-06
|confname=SenSys 2022
}}
|link=https://dl.acm.org/doi/pdf/10.1145/3560905.3568501
|title=Turbo: Opportunistic Enhancement for Edge Video Analytics
|speaker=Jiajun}}
 
 
 
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}