Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
 
(155 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-05-11 9:30'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=This paper presents a Long Range (LoRa) physical-layer data aggregation system (LoRaPDA) that aggregates data (e.g., sum, average, min, max) directly in the physical layer. In particular, after coordinating a few nodes to transmit their data simultaneously, the gateway leverages a new multi-packet reception (MPR) approach to compute aggregate data from the phase-asynchronous superimposed signal. Different from the analog approach which requires additional power synchronization and phase synchronization, our MRP-based digital approach is compatible with commercial LoRa nodes and is more reliable. Different from traditional MPR approaches that are designed for the collision decoding scenario, our new MPR approach allows simultaneous transmissions with small packet arrival time offsets, and addresses a new co-located peak problem through the following components: 1) an improved channel and offset estimation algorithm that enables accurate phase tracking in each symbol, 2) a new symbol demodulation algorithm that finds the maximum likelihood sequence of nodes' data, and 3) a soft-decision packet decoding algorithm that utilizes the likelihoods of several sequences to improve decoding performance. Trace-driven simulation results show that the symbol demodulation algorithm outperforms the state-of-the-art MPR decoder by 5.3× in terms of physical-layer throughput, and the soft decoder is more robust to unavoidable adverse phase misalignment and estimation error in practice. Moreover, LoRaPDA outperforms the state-of-the-art MPR scheme by at least 2.1× for all SNRs in terms of network throughput, demonstrating quick and reliable data aggregation.
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=INFOCOM 2023
|confname =EMNLP'25
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9519523
|link = https://arxiv.org/abs/2501.18460
|title=Quick and Reliable LoRa Physical-layer Data Aggregation through Multi-Packet Reception
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Kaiwen}}
|speaker=Youwei Ran
|date=2025-12-12
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Real-time depth estimation is critical for the increasingly popular augmented reality and virtual reality applications on mobile devices. Yet existing solutions are insufficient as they require expensive depth sensors or motion of the device, or have a high latency. We propose MobiDepth, a real-time depth estimation system using the widely-available on-device dual cameras. While binocular depth estimation is a mature technique, it is challenging to realize the technique on commodity mobile devices due to the different focal lengths and unsynchronized frame flows of the on-device dual cameras and the heavy stereo-matching algorithm. To address the challenges, MobiDepth integrates three novel techniques: 1) iterative field-of-view cropping, which crops the field-of-views of the dual cameras to achieve the equivalent focal lengths for accurate epipolar rectification; 2) heterogeneous camera synchronization, which synchronizes the frame flows captured by the dual cameras to avoid the displacement of moving objects across the frames in the same pair; 3) mobile GPU-friendly stereo matching, which effectively reduces the latency of stereo matching on a mobile GPU. We implement MobiDepth on multiple commodity mobile devices and conduct comprehensive evaluations. Experimental results show that MobiDepth achieves real-time depth estimation of 22 frames per second with a significantly reduced depth-estimation error compared with the baselines. Using MobiDepth, we further build an example application of 3D pose estimation, which significantly outperforms the state-of-the-art 3D pose-estimation method, reducing the pose-estimation latency and error by up to 57.1% and 29.5%, respectively.
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=Mobicom 2022
|confname =CoRL'24
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3560517
|link = https://openreview.net/forum?id=FO6tePGRZj
|title=MobiDepth: real-time depth estimation using on-device dual cameras
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Wenjie}}
|speaker=Yi Zhou
{{Latest_seminar
|date=2025-12-12
|abstract = Collaborative edge computing (CEC) is an emerging paradigm enabling sharing of the coupled data, computation, and networking resources among heterogeneous geo-distributed edge nodes. Recently, there has been a trend to orchestrate and schedule containerized application workloads in CEC, while Kubernetes has become the de-facto standard broadly adopted by the industry and academia. However, Kubernetes is not preferable for CEC because its design is not dedicated to edge computing and neglects the unique features of edge nativeness. More specifically, Kubernetes primarily ensures resource provision of workloads while neglecting the performance requirements of edge-native applications, such as throughput and latency. Furthermore, Kubernetes neglects the inner dependencies of edge-native applications and fails to consider data locality and networking resources, leading to inferior performance. In this work, we design and develop ENTS, the first edge-native task scheduling system, to manage the distributed edge resources and facilitate efficient task scheduling to optimize the performance of edge-native applications. ENTS extends Kubernetes with the unique ability to collaboratively schedule computation and networking resources by comprehensively considering job profile and resource status. We showcase the superior efficacy of ENTS with a case study on data streaming applications. We mathematically formulate a joint task allocation and flow scheduling problem that maximizes the job throughput. We design two novel online scheduling algorithms to optimally decide the task allocation, bandwidth allocation, and flow routing policies. The extensive experiments on a real-world edge video analytics application show that ENTS achieves 43% -220% higher average job throughput compared with the state-of-the-art.
}}
|confname=SEC 2022
|link=https://ieeexplore.ieee.org/abstract/document/9996714
|title=ENTS: An Edge-native Task Scheduling System for Collaborative Edge Computing
|speaker=Qinyong}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}