Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(135 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Recent years have witnessed the wide adoption of RDMA in the cloud to accelerate first-party workloads and achieve cost savings by freeing up CPU cycles. Now cloud providers are working towards supporting RDMA in general-purpose guest VMs to benefit third-party workloads. To this end, cloud providers must provide strong performance isolation so that the RDMA workloads of one tenant do not adversely impact the RDMA performance of another tenant. Despite many efforts on network performance isolation in the public cloud, we find that RDMA brings unique challenges due to its complex NIC microarchitecture resources (e.g., the NIC cache).In this paper, we aim to systematically understand the impact of RNIC microarchitecture resources on performance isolation. We present a model that represents how RDMA operations use RNIC resources. Using this model, we develop a test suite to evaluate RDMA performance isolation solutions. Our test suite can break all existing solutions in various scenarios. Our results are acknowledged and reproduced by one of the largest RDMA NIC vendors. Finally, based on the test results, we summarize new insights on designing future RDMA performance isolation solutions.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=NSDI '23
|confname =ACL'24
|link=https://www.usenix.org/conference/nsdi23/presentation/kong
|link = https://arxiv.org/abs/2406.16441
|title=Understanding RDMA Microarchitecture Resources for Performance Isolation
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Xinyu Zhang
|speaker=Bairong Liu
|date=2023-10-19}}
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract=LoRa networks have been deployed in many orchards for environmental monitoring and crop management. An accurate propagation model is essential for efficiently deploying a LoRa network in orchards, e.g., determining gateway coverage and sensor placement. Although some propagation models have been studied for LoRa networks, they are not suitable for orchard environments, because they do not consider the shadowing effect on wireless propagation caused by the ground and tree canopies. This paper presents FLog, a propagation model for LoRa signals in orchard environments. FLog leverages a unique feature of orchards, i.e., all trees have similar shapes and are planted regularly in space. We develop a 3D model of the orchards. Once we have the location of a sensor and a gateway, we know the mediums that the wireless signal traverse. Based on this knowledge, we generate the First Fresnel Zone (FFZ) between the sender and the receiver. The intrinsic path loss exponents (PLE) of all mediums can be combined into a classic Log-Normal Shadowing model in the FFZ. Extensive experiments in almond orchards show that FLog reduces the link quality estimation error by 42.7% and improves gateway coverage estimation accuracy by 70.3%, compared with a widely-used propagation model.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=IPSN '23
|confname =TMC'25
|link=https://dl.acm.org/doi/10.1145/3583120.3586969
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=Link Quality Modeling for LoRa Networks in Orchards
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Jiacheng Li
|speaker=Mengyu
|date=2023-10-19}}
|date=2025-12-05
{{Latest_seminar
}}
|abstract=Cooperative perception significantly enhances the perception performance of connected autonomous vehicles. Instead of purely relying on local sensors with limited range, it enables multiple vehicles and roadside infrastructures to share sensor data to perceive the environment collaboratively. Through our study, we realize that the performance of cooperative perception systems is limited in real-world deployment due to (1) out-of-sync sensor data during data fusion and (2) inaccurate localization of occluded areas. To address these challenges, we develop RAO, an innovative, effective, and lightweight cooperative perception system that merges asynchronous sensor data from different vehicles through our novel designs of motion-compensated occupancy flow prediction and on-demand data sharing, improving both the accuracy and coverage of the perception system. Our extensive evaluation, including real-world and emulation-based experiments, demonstrates that RAO outperforms state-of-the-art solutions by more than 34% in perception coverage and by up to 14% in perception accuracy, especially when asynchronous sensor data is present. RAO consistently performs well across a wide variety of map topologies and driving scenarios. RAO incurs negligible additional latency (8.5 ms) and low data transmission overhead (10.9 KB per frame), making cooperative perception feasible.
|confname=MobiCom '23
|link=https://dl.acm.org/doi/abs/10.1145/3570361.3613271
|title=Robust Real-time Multi-vehicle Collaboration on Asynchronous Sensors
|speaker=Yang Wang
|date=2023-10-19}}
{{Latest_seminar
|abstract=Serverless computing provides fine-grained resource elasticity for data analytics---a job can flexibly scale its resources for each stage, instead of sticking to a fixed pool of resources throughout its lifetime. Due to different data dependencies and different shuffling overheads caused by intra- and inter-server communication, the best degree of parallelism (DoP) for each stage varies based on runtime conditions. We present Ditto, a job scheduler for serverless analytics that leverages fine-grained resource elasticity to optimize for job completion time (JCT) and cost. The key idea of Ditto is to use a new scheduling granularity---stage group---to decouple parallelism configuration from function placement. Ditto bundles stages into stage groups based on their data dependencies and IO characteristics. It exploits the parallelized time characteristics of the stages to determine the parallelism configuration, and prioritizes the placement of stage groups with large shuffling traffic, so that the stages in these groups can leverage zero-copy intra-server communication for efficient shuffling. We build a system prototype of Ditto and evaluate it with a variety of benchmarking workloads. Experimental results show that Ditto outperforms existing solutions by up to 2.5× on JCT and up to 1.8× on cost.
|confname=SIGCOMM '23
|link=https://dl.acm.org/doi/abs/10.1145/3603269.3604816
|title=Ditto: Efficient Serverless Analytics with Elastic Parallelism
|speaker=Mengqi Ma
|date=2023-10-19}}
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}